Report to the National Science Foundation

on the Impact of

The Interactive Mathematics Project (IMP)

Principal Investigators
Diane Resek and Dan Fendel
San Francisco State University
Lynne Alper and Sherry Fraser
Lawrence Hall of Science
University of California at Berkeley

Report by
Harold L. Schoen
Division of Curriculum and Instruction
College of Education, University of Iowa

for the Impact Study of Mathematics Education Projects
Funded by the National Science Foundation, 1981-91
Norman L. Webb, Principal Investigator

Wisconsin Center for Education Research
School of Education
University of Wisconsin—Madison

April 1993
The original information that appears in this report was obtained by interviewing Diane Resek, Dan Fendel, and Sherry Fraser. Supporting data were obtained from IMP publications. Early drafts of this report were reviewed by Diane Resek.

IMP was funded under National Science Foundation grant MDR 9050208. This impact study of a mathematics education project was supported by the National Science Foundation under NSF grant MDR 9252727 and by the Wisconsin Center for Education Research, School of Education, University of Wisconsin-Madison. The opinions, findings, and conclusions that are expressed in this study do not necessarily reflect those of the supporting agencies.
Contents

Overview .. 1
Organizational Context and Antecedents of IMP .. 1
The IMP Curriculum 2
 An Integrated Four-Year Curriculum .. 2
 Instructional Strategies .. 4
 Assessment ... 4
 Compatibility With Existing Curricula and State Standards 4
Contributions of IMP to Mathematics Education 5
 Curriculum Dissemination and Use ... 5
 IMP Enrollment, Demographics, and Retention at Three Principal Test Sites 6
 Curriculum Evaluation ... 6

Table 1: IMP Enrollment and Retention at Mission High School, Frequencies and Percentages for Two Cohorts, 1989–90 Beginning Students and 1990–91 Beginning Students ... 9

Table 2: Frequencies, Means, and Standard Deviations of Performance on Practice SAT by IMP and Control Students at the Three Principal Test Sites in Spring 1992 ... 10

Appendix A: Chart of IMP's Relationship to Other Projects and Products Funded by the National Science Foundation

Appendix B: Major Presentations on the Interactive Mathematics Project
Overview

The Interactive Mathematics Project (IMP) has made significant progress in developing and field testing an integrated, four-year, problem-based mathematics curriculum for secondary school students. Very much in line with the core curriculum recommended in the Standards published by the National Council of Teachers of Mathematics (NCTM), the IMP curriculum has been designed to broaden the range of mathematics that is available to students, to expand the number of students who are attracted to secondary mathematics education, to emphasize broad applications and problems while making full use of technology, and to change the manner in which mathematics is assessed by focusing on how students think about mathematics as they attempt to solve complex problems.

IMP materials have been developed in classrooms at three public schools that serve very diverse students who live in the San Francisco area and in Tracy, California. However, the curriculum is sufficiently developed that at least portions of a nearly complete four-year program are currently being offered to 7,500 students in 28 schools that are located in seven states.

Organizational Context and Antecedents of IMP

Although IMP has been funded in two phases by NSF, the phases have been coordinated, substantively and organizationally. Consequently, this review treats the accomplishments of the original 1989–92 project and the 1992–97 continuation project in developing a four-year high school curriculum.

The original project was designed to develop and field test a three-year, problem-based, integrated mathematics curriculum for secondary school students. The five-year continuation project will design, test, and revise a fourth year component for the existing three-year IMP curriculum, re-examine the entire four-year curriculum, develop supplementary materials for the first three years of the curriculum, and publish the curriculum materials that are to be used in the four-year curriculum.

IMP is a joint venture of San Francisco State University and the Lawrence Hall of Science at the University of California at Berkeley. In addition to funding from NSF, the project has received funding from the California Postsecondary Education Commission, the California Department of Education, and the San Francisco Foundation. Funding for the project was originally obtained by Diane Resek and Dan Fendel, of the Mathematics Department at San Francisco State, and by Lynne Alper and Sherry Fraser, of EQUALS at the Lawrence Hall of Science, Berkeley. These investigators had responded successfully to a 1989 request for proposals, published by the California Postsecondary Education Commission, to revamp drastically the usual three-course sequence of Algebra I, Geometry, and Algebra II. Resek and Fendel’s scholarly involvement in related curriculum development dates to their work as graduate students on Project SEED, which was an offshoot of the 1960s Madison Project—an early curriculum development effort that incorporated a constructivist perspective. Some of these influences and organizational relationships are depicted graphically in Appendix A. In addition to influences that derive from the immediate organizational affiliations of the principal investigators, IMP has both influenced and been influenced by the following projects: Project STAMP, an NSF-funded program that shares a test site and personnel with IMP; College Preparatory Mathematics: Change from Within, an undertaking of the University
of California at Davis that has shared ideas and materials with IMP; Project 2061, another
NSF-funded undertaking with which IMP has shared ideas; and Project Investigations, also a
NSF-funded program that is based at Lawrence Hall of Science.

The IMP Curriculum

An Integrated Four-Year Curriculum

The critical difference between the IMP curriculum and conventional multiyear mathematics
curricula lies in the fact that IMP materials are problem based, rather than topic based. Thus, in the
words of the project’s co-directors, "algebra, geometry, trigonometry, probability, and other areas of
mathematics are interconnected with each other, with their applications, and with other subject areas."

The first year curriculum incorporates five units—Patterns in Mathematics, The Overland Trail,
The Game of Pig, The Pit and the Pendulum, and Shadows—each of which takes five or six weeks of
class time. In the course of these units, students develop and work through important mathematical
concepts and skills, by using concrete planning problems from the settlement of the American West,
games of chance, literary and empirical models of periodic motion, and estimates of the relative
length of shadows. The units include work on problem-solving strategies, geometric and number
patterns, the use of variables to express generalizations, graphing, algebraic expressions, systems of
equations, probability, quadratic equations, curve fitting, normal distributions and standard deviations,
and trigonometric functions. Throughout this process, the students learn how to use computers,
graphing calculators, manipulatives, and the traditional pencil and paper to explore problems and to
learn how to solve problems systematically.

In the second-year curriculum, students work with five major units—Solve It!, Is There Really a
Difference?, Do Bees Build It Best?, All About Alice, and Cookies—which vary in length from four to
six weeks. The curriculum incorporates two additional week-long units, Starting Off Write and
Sitting for the SAT. Collectively, the seven units reinforce and build on material that is presented in
the first year curriculum. Students work on problems that involve the comparison of populations, the
areas of polygons and the volumes of regular prisms, relationships between doubles and halves in
passages from Lewis Carroll’s Alice in Wonderland, and the maximization of profits from a simple
cookie store. The units show students how to work with the concepts of equivalent expressions and
equivalent equations, relationships between populations and population samples, hypothesis testing,
the chi-square statistic, the Pythagorean Theorem, exponents and logarithms, scientific notation and
measurement, linear inequalities and linear programming, and solutions to systems of linear
equations.

Third year curriculum content is conveyed in four major units—Pennant Fever, Orchard Hideout,
Leave Room for Me!, and Meadows or Malls—which vary in length from five to eight weeks. These
units present generalizable problems—in the context of probabilistic estimates that one of two teams
will win a baseball pennant, predictions of the rates at which trees will grow and fill the space that is
available in an orchard, rates of increase in human populations, and land use decision making.
Students extend their understanding of material learned in preceding years of the curriculum and learn
how to use the following substantial list of concepts and skills: combinatorial coefficients and
probability tree diagrams, permutations and combinations, the binomial theorem, Pascal’s Triangle,
statistical reasoning, circles and coordinate geometry, geometric proofs, arithmetic rates of growth, the derivative and the instantaneous rate of growth, exponential functions and the derivation and use of base e, linear programming, and the solution of linear systems using matrices.

When it is completed, the fourth-year curriculum may incorporate five units. One unit, The Sine of Music, extends previous student work on right triangle trigonometry and teaches that trigonometric functions can be treated as circular functions. The other anticipated units may deal with Markov chains in the context of a random walk situation to develop students’ understanding of probability and matrices, derivatives in the context of physics problems concerning velocity and acceleration, three-dimensional geometry, and written proofs—which students have employed in many units. IMP researchers have written that the fourth-year curriculum "would have a more varied subject matter than a calculus–focused course, would serve both college–bound and non–college bound students, would build on the strong backgrounds of students who have completed three years in the program, . . . would continue, in depth, the broad-based, problem-solving approach to mathematics” that characterizes the existing three-year curriculum, and "would more than adequately prepare students for success in a future university calculus course."

Each unit is organized around a central problem or theme, which focuses student learning on a group of important concepts or skills. The central problem incorporates a variety of smaller problems that develop the underlying skills and concepts that are needed to solve the central problem. The smaller problems may be solved during class time or assigned for homework. In this context, IMP’s directors have observed that "class activities often involve problems that are too difficult for a single student to solve, but which a group can solve by pooling the insights and ideas of its members. By fostering the sharing of ideas among group members, such activities establish the notion that communication is an important component of mathematics."

In the development of this curriculum, the IMP writers and teachers have sought curricular flexibility, in part, to make the curriculum useful to heterogeneous groups of students. In the pursuit of this goal, the first three years of the curriculum have been tested extensively at three principal test sites in California that serve very diverse populations. Berkeley High School is an integrated school; Mission High School, in San Francisco, is an inner city school; and Tracy Joint Union High School has a large rural population.

To help teachers respond flexibly to the varied needs of their students, IMP will augment the materials that were produced during the first three years of the project. The new materials will offer the following: reinforcement experiences, for students who need to reflect on and synthesize what they have already learned; extensions, for students who can pursue a specific topic in greater depth than the main portion of an individual mathematics class; honors problems, for students who are not in an exclusive honors section and who seek extra credit work that is more challenging than the regular course material; and language accessibility, for students whose first language is not English, and for students who find standard mathematical language intimidating.
Instructional Strategies

IMP does not rely on the traditional instructional strategies that emphasize group lectures and discussions and individual, paper-and-pencil seat work. Instead, IMP relies on group problem solving, in which students tackle problems that may be too difficult for a single individual; written and oral presentations that help students to clarify their thinking and refine their ability to communicate mathematically; manipulative materials, which reveal the physical reality that underlies many abstract concepts; and relatively advanced technology, such as graphing calculators—which are available at all times—and computers. These approaches to instruction converge in IMP’s "Problems of the Week," that is, open-ended investigations on which students work independently, write descriptions of their strategies and solutions, and deliver an oral presentation in class.

Assessment

The principal investigators have written that "in IMP, the assessment itself helps students understand what is important in mathematics." This is accomplished by using open-ended questions, group and whole class discussions, student portfolios, oral presentations, and self assessments, in addition to more traditional methods. Throughout, the purpose of assessment is to "enhance thinking in classrooms and . . . give more complete information for teaching decisions and for external evaluation purposes."

Compatibility With Existing Curricula and State Standards

IMP course content has been approved by several important arbiters of mathematics curricula. In addition, admission to college does not seem to present important difficulties to IMP students, since California has made the temporary accommodations noted below and since the program is sufficiently new in other states that the issue has not arisen. Four examples are pertinent. First, for the duration of the field test, the University of California and the California State University systems have agreed to accept the work of IMP students in fulfillment of their entrance requirements. At the conclusion of the project, IMP will seek permanent approval. Second, the work of IMP has been embraced by the official state Mathematics Framework that serves as a reference for educators in California. In a recent submission to NSF, IMP investigators observed that "California’s new Mathematics Framework cites the IMP curriculum as 'a successful integrated mathematics core program,' and gives a description of one of the IMP units together with sample activities as an exemplar of curriculum materials for California’s secondary schools . . ." Third, the interdisciplinary instructional material of one Project 2061 site uses the IMP curriculum as its mathematics learning experience for high school students. Finally, the relatively rapid expansion of IMP into schools outside of California, treated in the section that follows, suggests that the curriculum is compatible with—or an appropriate replacement for—existing options in the school districts that have approved its introduction.
Contributions of IMP to Mathematics Education

Curriculum Dissemination and Use

Although IMP has focused most of its dissemination efforts on schools that are test sites, 28 schools in seven states had started to use the curriculum by September 1992. The growth in this number over time is revealing. In September 1989, only the three principal test sites in San Francisco, Berkeley, and Tracy used the curriculum; one year later, three additional schools were using the curriculum; by September 1991, there were six additions to the list of project schools; and by September 1992, 16 more schools were using the IMP curriculum. These schools tend to cluster in the western states: one in Arizona, 20 in California, one in Colorado, one in Connecticut, two in Oregon, two in Texas, and one in Washington. At these schools, at least 98 teachers were using the IMP materials by the beginning of the 1992–93 academic year.

The project receives many requests from around the country for its materials. IMP requires that there be some community preparation and teacher inservice before the program can be used in a new school. Teachers are encouraged to team teach during their first year with the IMP program, and they need to have one extra free period to plan in any year that they are teaching a new IMP course. The project presently provides teacher support in the form of inservice workshops—primarily by lead teachers who have experience with IMP—and regular visits by project staff to IMP classes, to provide support and encouragement. Despite these rather high "entrance requirements," the IMP roster of users in 1992–93 has grown to 98 teachers, who use the materials with an estimated 7,500 students.

The IMP directors and teachers have regularly made presentations about the program to groups in California, elsewhere in the United States, and in other countries. By the end of 1991, the directors and teachers had given 21 major presentations. Appendix B details the titles, dates, and locations of the presentations. Many local presentations for parents and school personnel in IMP schools are not included on this list. A codirector of the project estimates that presentations have continued at about the same rate in 1992.

Data from 1991–92 show that IMP materials have been used by diverse groups of students. During that year, 51 teachers from 12 high schools in five states used the IMP curriculum to instruct a grand total of 3,142 students. Of these students, 47 percent were white, 23 percent were Mexican American, 12 percent were African American, and 10 percent were Asian American. Native American and "Other" pupils comprised the remaining 8 percent of students who used IMP during the 1991–92 academic year.

IMP's co-directors have estimated that, by the final year of the project, there may be as many as 1,000 teachers across the nation who will have been trained to use the IMP curriculum, and there may be about 2,000 IMP classrooms in operation. These estimates are based on the experience of the last three years, during which the IMP curriculum has spread, with virtually no outreach effort, from the original three test sites.
be more useful and satisfying than they find traditional methods of testing and grading. In fact, some teachers even reported that their involvement in IMP has kept them in the profession, since they had previously been very frustrated with traditional methods of teaching and testing.

There have been some unintended outcomes. According to one of the codirectors of the project, some IMP teachers have changed the way that they teach in other classes, and have moved in the direction of IMP. Thus, they make more use of graphing calculators, application projects, group work, oral and written communication, and broader assignment methods. IMP teachers also report having an impact in similar directions on the practice of their teacher colleagues who are not using IMP.

Finally, there are two problems that have arisen during the implementation of IMP that should be noted here. The parents of students who have taken algebra in eighth grade often expect their children to be ready for calculus in their senior year—a goal for which IMP is not designed. As a result, some of the very top mathematics students have stayed in traditional mathematics courses. There was also some initial concern among minority parents at Berkeley High that their children were being experimented with, but a co-director of the project reports that a program of family mathematics nights has helped to alleviate most of this concern.
Table 1

IMP Enrollment and Retention at Mission High School
Frequencies and Percentages for Two Cohorts
1989-90 Beginning Students and 1990-91 Beginning Students

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort Retention by Academic Year:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Students first starting IMP in 1989-90 who:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrolled in IMP</td>
<td>N 79</td>
<td>63</td>
<td>48*</td>
</tr>
<tr>
<td>Left school</td>
<td>N</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Remained in school but left IMP</td>
<td>N</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Continued from previous year</td>
<td>N</td>
<td>63</td>
<td>48</td>
</tr>
<tr>
<td>%</td>
<td>83</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Continued from beginning of IMP</td>
<td>N</td>
<td>63</td>
<td>48</td>
</tr>
<tr>
<td>%</td>
<td>83</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>2. Students first starting IMP in 1990-91 who:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrolled in IMP</td>
<td>N</td>
<td>116</td>
<td>71</td>
</tr>
<tr>
<td>Left school</td>
<td>N</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Remained in school but left IMP</td>
<td>N</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Continued from previous year</td>
<td>N</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

*Ethnic distribution of 48 students from Cohort 1 who were enrolled during the first semester of 1991-92:
- African American 1
- Mexican American 7
- Asian 22
- Hispanic 7
- Filipino 11
Table 2
Frequencies, Means, and Standard Deviations of Performance on Practice SAT by IMP and Control Students at the Three Principal Test Sites in Spring 1992

<table>
<thead>
<tr>
<th></th>
<th>Berkeley High School</th>
<th>Mission High School</th>
<th>Tracy Joint Union High School</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMP</td>
<td>Control</td>
<td>IMP</td>
</tr>
<tr>
<td>All Students:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of students tested</td>
<td>72 56</td>
<td>38 27</td>
<td>60 32</td>
</tr>
<tr>
<td>Projected mean score on SAT</td>
<td>499 483</td>
<td>404 423</td>
<td>445 399</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>98 95</td>
<td>100 95</td>
<td>102 80</td>
</tr>
<tr>
<td>Difference of means (Z-score)</td>
<td>.969 .77</td>
<td></td>
<td>2.389</td>
</tr>
<tr>
<td>Probability {Z \geq \text{indicated value}}</td>
<td>.17 .22</td>
<td></td>
<td>.01</td>
</tr>
<tr>
<td>11th Grade Students:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of students tested</td>
<td>70 54</td>
<td>22 19</td>
<td>54 27</td>
</tr>
<tr>
<td>Projected mean score on SAT</td>
<td>503 487</td>
<td>426 437</td>
<td>454 413</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>94 94</td>
<td>94 97</td>
<td>101 76</td>
</tr>
<tr>
<td>Difference of means (Z-score)</td>
<td>.94 b</td>
<td></td>
<td>2.018</td>
</tr>
<tr>
<td>Probability {Z \geq \text{indicated value}}</td>
<td>.18</td>
<td></td>
<td>.02</td>
</tr>
<tr>
<td>12th Grade Students:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of students tested</td>
<td>14 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projected mean score on SAT</td>
<td>346 353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>76 42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Statistics are from a study conducted by IMP staff.

*Although the second sample size is less than 30, IMP researchers have used the Z-statistic to
compare means since they believe that it is reasonable to assume that the populations are normally
distributed and that the variances are equal. They assume that the populations are normally
distributed from the construction of the SAT and that the variances are equal from the close sample
standard deviations.

*Sample too small for use of the Z-statistic.

During the spring of 1992, sample Scholastic Aptitude Tests (SAT) were administered to IMP
students who were completing their third year with the project and to control groups. At Berkeley
and Tracy, the control group consisted of students in Algebra II classes at the same schools. There
was no appropriate control group at Mission, so a group of Algebra II students at another high school
was used as the control group.

In the fall of 1990, when the second year IMP students at the Berkeley and Tracy high schools were
in grade 10, all of the second year IMP students took a sample SAT, with no specific preparation
beforehand. At Berkeley, the mean score of the IMP students was significantly higher (p < .05) at
443 than the 412 mean score received by students in the control group. At Tracy, the mean score of
the IMP students was 443, and the corresponding score for the control group was 412, suggesting that
students in the program did as well as their counterparts in the control group at that school. In each
instance, the control group consisted of students who were enrolled in traditional sophomore
mathematics classes.
Appendix A

Chart of IMP's Relationship to Other Projects
and Products Funded by the National Science Foundation

1960's Madison Project

early influence on co-directors

EQUALS

Assessment, Teacher Education

Interactive Mathematics Project (1989-92)

14 Curriculum Units

Teacher/Family Workshops

IMP Continuation Project (1992-97)

Fourth Year Curriculum

Refinement & Further Evaluation

National Dissemination

Interactive Mathematics Project
Appendix B

Major Presentations on the Interactive Mathematics Project

Major Presentations on the Interactive Mathematics Project

As the Interactive Mathematics Project has developed, its directors and teachers have been speaking to groups in California, across the country, and internationally about the program and its progress. The following is a list of some of the major presentations to date:

<table>
<thead>
<tr>
<th>Group Addressed</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalition for Essential Schools</td>
<td>December, 1991</td>
<td>Providence, RI</td>
</tr>
<tr>
<td>Harvard University, Department of Mathematics</td>
<td>October, 1991</td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>British Columbia Mathematics Educators</td>
<td>October, 1991</td>
<td>Vancouver, B.C.</td>
</tr>
<tr>
<td>Mathematical Sciences Education Board</td>
<td>October, 1991</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>Oregon Math Leaders Conference</td>
<td>August, 1991</td>
<td>McMinnville, OR</td>
</tr>
<tr>
<td>Harvard Institute on Alternative Assessment</td>
<td>July, 1991</td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>National Science Foundation Materials Development—project directors meeting</td>
<td>May, 1991</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>Texas Association of Mathematics Supervisors</td>
<td>May, 1991</td>
<td>San Antonio, TX</td>
</tr>
<tr>
<td>University of California at Berkeley, School of Education</td>
<td>April, 1991</td>
<td>Berkeley, CA</td>
</tr>
<tr>
<td>National Council of Supervisors of Mathematics, Annual Meeting</td>
<td>April, 1991</td>
<td>New Orleans, LA</td>
</tr>
<tr>
<td>Montgomery County Schools</td>
<td>February, 1991</td>
<td>Dayton, OH</td>
</tr>
<tr>
<td>Educational Development Center</td>
<td>February, 1991</td>
<td>Newton, MA</td>
</tr>
<tr>
<td>Connecticut Institute for Teaching and Learning</td>
<td>December, 1990</td>
<td>Hartford, CN</td>
</tr>
<tr>
<td>California Schools Leadership Academy</td>
<td>October, 1990</td>
<td>Sacramento, CA</td>
</tr>
<tr>
<td>Pacific Northwest Mathematics Conference</td>
<td>October, 1990</td>
<td>Portland, OR</td>
</tr>
<tr>
<td>Australian Association for Mathematics Teaching, National Conference</td>
<td>July, 1990</td>
<td>Hobart, Australia</td>
</tr>
<tr>
<td>National Council of Teachers of Mathematics Regional Meeting</td>
<td>July, 1990</td>
<td>Honolulu, HI</td>
</tr>
<tr>
<td>National Council of Supervisors of Mathematics, Annual Meeting</td>
<td>April, 1990</td>
<td>Salt Lake City, UT</td>
</tr>
<tr>
<td>Pacific Northwest Mathematics Conference</td>
<td>October, 1989</td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>International Commission for the Study and Improvement of Mathematics Teaching—annual conference</td>
<td>July, 1989</td>
<td>Brussels, Belgium</td>
</tr>
</tbody>
</table>