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Executive Summary

A multidisciplinary team worked over a year to achieve the Systemic Initiatives: Student
Achievement Analysis Study’s main goal of developing an analytic framework for studying the
degree to which systemic reform contributes to improved student achievement and other
outcomes. In pursuing this goal, we sought to provide information to the National Science
Foundation that will enable NSF, its education constituencies, and the education research
community address the following questions:

1.

2.

3.

4.

How can the data submitted to NSF by systemic initiatives (Sls) be used to
evaluate systemic reform?

How does the precision of analysis depend upon the qualities of student
assessment data?

What statistical models best fit the data linking systemic initiatives to student
achievement?

What are the lessons learned about the kind of databases and analyses that are
most effective for evaluating and understanding systemic reform?

To demonstrate our approach to developing analytic frameworks, we analyzed data from the
Texas Assessment of Academic Skills (TAAS) for grades 3 through 8 from 1994 through 2000
and compared Urban Systemic Initiative (USI) districts with other districtsin the state.

We identified a number of desirable features of data and databases that are needed to
study the impact of the systemic initiatives and other large-scale reforms:

1.

o urwbd

o N

Datathat describe for the USI, or other initiative, the participation level of
teachers by school;

An identifiable control group;

Testing of studentsin consecutive years;

Vertically scaled scores over grades;

An assessment that measures the full range of student knowledge without ceiling
effects;

Assessment data linked with student, school, and district demographic and
program data;

Alignment of assessments with district standards and USI goals; and,

A means of determining student attrition rates in the population and the selective
exclusion of students from testing.
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We identified three general areas that can influence the precision of analyses of student
achievement data in studying the impact of systemic reform that need to be considered: (1) the
extent to which teachers, schools, and districts participated in the systemic initiative over time;
(2) what students were excluded from the testing and analyses; and, (3) the standard error of
measurement in the assessment instruments.

There is no one best model for analyzing the link between systemic initiatives and student
achievement. Each model is based on specific assumptions made necessary by the
incompleteness of available data or other constraints. We developed three approaches, each by a
different researcher. All three models provide information about students growth over time and
compare the performance by studentsin USI districts with those in other districts. In this respect,
the results from one model serve as areplication of those from the other models. However, each
of the three researchers made different assumptions about growth that influenced which groups
of students were tracked over time. Bolt examined changes in school meanson TAAS at a given
gradelevel (e.g., grade 5in 1994, 1995, 1996, etc.). He assumed that this approach would more
effectively control for teacher effects because the same teachers are more likely to teach the
same grade in successive years. Within-grade analysis aso is more comparable with the nature
of TAAS and the TLI scores that are equated within grades. His model implies that the variation
among different cohorts of students (e.g., 4™ grade studentsin 1995 compared with 4™ grade
studentsin 1996) is due to program effects, rather than to other factors.

Gamoran used nearly all of the studentsin the database to estimate the growth intercepts
and slope. In this very robust model, students with any two scores, even those whose scores are
not for consecutive years, can be used to estimate the parameters. To devel op estimates for a
model with a quadratic term requires students with four data pointsin order to estimate the three
parameters intercept, slope (linear term), and changed (quadratic term). Students with fewer than
four data points contribute to estimating the lower-order terms. Thus, Gamoran’s growth model
included students who left or entered the system during the period investigated. He also included
students who changed school s within the system, state, or district. Students who were retained in
agrade and had two scores for the same grade were deleted from the database used in the
anaysis.

Meyer’s value-added analysis examined students' performance in a grade by taking into
consideration achievement from the year before. His analyses included only students who had
test scores for two consecutive years (e.g., grades 3 and 4, grades 4 and 5, etc.). Thiswas amore
restrictive requirement than that used by the other two researchers. The advantage of this
approach isthat greater precision could be given to improved student performance that can be
attributed to a school year. The other two researchers computed the intercept term, or theinitial
performance at grade 3, that was used to compare the starting points among districts, but their
models computed the difference between any two grades using equations developed to fit all of
the points over the seven years, rather than just between two years.

Based on the three analytic models, we drew the following conclusions:

1. Texas Assessment of Academic Skills (TAAS) scoresimproved from 1994 to 2000 for
all groups. Annual gain scores by Blacks and Hispanic students relative to White students
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improved over time. Annual gain scores for economically disadvantaged remained
constant over time.

2. USI districts began lower, but raised scores faster than non-USI districts:

A. Thereis some evidence that USI districts improved faster than non-USI  districts, but
this may be due to the scoring metric used (e.g., TLI rather than Rasch). Meyer found
positive USI effects over time for most grade levels. Bolt found a positive USI effect
at grade 7.

B. Texas USI scores started below those of non-USI districts and produced
smaller annual gainsthan non-USIsin 1994.

C. Thereisno evidence that USI districts lost ground compared to non-US|
districts from 1994-2000.

3. Achievement gaps between minority and White students and between advantaged and
disadvantaged students narrowed statewide on the TLI. However, thisfinding was highly
dependent on the scaling metric used. There was much less narrowing of gaps when the
Rasch scale, which is more sensitive to gains at the extreme ends of achievement, was
used rather than the TLI. There was some evidence from one model that the gap between
White students and Black students narrowed more in USI districts than in the contrast
districts.

4. Thereisno differencein the rate at which achievement gaps are narrowing in US| and
non-USI districts.

5. Anincreasing proportion of students were tested over time.

A. TAAS attrition rates in students not being tested went down over time.
B. There was no differencein the TAAS attrition rate between USI districts and
large urban districts that are not USIs.

6. There arelarge differencesin TAAS attrition by demographic group.

Demonstrating the impact of large-scale reform isimmensely complex. This project has
reveal ed the reasons for much of this complexity and has demonstrated specific analytic
techniques that can be used to study the growth in student learning over time, given this
complexity. Being restricted to only using existing data, we were unable to over come major
design flaws and the lack of data on the independent variables. Even with these deficiencies, the
model s produced some evidence of the improvement in student learning by districts with USIs
compared to other districts. The analytic models used in this study have wide applicability in
studying large-scale reform. The most important implication of this study is to inform the design
of the evaluations of large-scale reform efforts so that the necessary datawill in future be
available to more effectively measure the impact of such interventions on student learning.
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Introduction

This paper draws on alarge-scale data set, consisting of all students tested as part of the
Texas Assessment of Academic Skills (TAAS), as abasis for evaluating the effectiveness of the
Urban Systemic Initiative (USI) and academic reforms as awhole in Texas over the period 1994
to 2000. The paper focuses on developing statistical methods that are suitable for analyzing
programs using large-scal e data sets consisting of many students assessed in multiple years. The
Texas data set examined here includes information on approximately two million students each
year in grades 3 to 8. The study employs amodel of student achievement in mathematics that
features two levels, a student level (the “micro,” or level-one equation) and a district level (the
“macro,” or level-two equation). It builds on the conventional postachievement-on-
preachievement model, but includes several novel features:

* Themodel usestwo aternative scales for measuring mathematics achievement. Oneis
the Texas Learning Index (TL1I), the scale used by the Texas Educational Agency (TEA).
The other is a Rasch scale developed as a part of this research project. The paper
investigates the extent to which major conclusions are sensitive to the choice of
achievement scale.

* Themodel controlsfor measurement error in prior mathematics achievement. See Meyer
(1992, 1999) for achievement models that address the problem of measurement error.

» Estimates of measurement error are derived for the Rasch scale using two approaches: the
conventional approach based on an asymptotic (maximum likelihood) formulafor the
variance of the achievement estimate and an approach based on a finite sample formula.
The latter provides substantially different and more accurate results than the conventional
approach.

In the next part, we consider alternative scal es for measuring mathematics achievement.
Subsequent sections present the evaluation methods used in the study, finite sample methods for
estimating the measurement error characteristics of the Rasch scale and Texas Learning Index,
the empirical results of the study, and the conclusions of the study.

Alternative Scalesfor Measuring Mathematics Achievement

Achievement scores produced by the Texas Assessment of Academic Skills (TAAS) are
typically reported on a scale known as the Texas Learning Index (TLI). The TLI scaleis derived
from a standard psychometric model of test scores, the Rasch model, but it differs substantially
from the scale typically produced by the Rasch model. One of the objectives of this study isto
compare results based on the TLI and the Rasch scale. TLI scores (and the Rasch scale scores
that underlie thisindex) are designed to be comparable over time at a given grade level
(horizontally equated), but are not comparable across grades (not vertically equated). As aresult,
it is not possible to explicitly measure student achievement growth using the Texas achievement
data. Thisis not amajor limitation, however, because the “post on pre” evaluation mogels used
in this study do not require that posttests and pretests be measured on the same scale.

! Many growth curve models require test scores to be measured on the same scale.
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The Texas Learning Index is quite simple. In the base year (1994), TLI was alinear
transformation of the raw (number correct) score R. In subsequent years, it was (and continues to
be) alinear transformation of the equated (predicted) raw score. The transformation from raw
scoreto TLI isgiven by:

TLI ET(R)=KR_§MJ—ZO}*15+7O (2)

Soq

where R,, and s¢, represent the mean and standard deviation of raw test scores in the base year
and z, isthe passing standard selected by the state (defined in the units of a standardized z score).
The index isnormed so that it had a standard deviation in the base year equal to 15 and a passing
cut point equal to 70. It appears that in most grades the state selected a passing standard fairly
close to the mean score (that is, az score equal to zero). Asaresult, the TLI is essentially
normed to have amean of 70 in the base year.

Since raw scores are generally not comparable across different test forms (due to
differencesin the difficulty of test items), the TLI in years other than the base year is derived
from an underlying Rasch score (6) that is designed to be comparable across years (at a given
grade level). Given an estimate of 6, a Rasch model is used to predict the raw score that a student

would have received on the original 1994 TAAS (1%4). Finally, this scoreisconvertedtoaTLI,
using formulaf1)] (See below for the appropriate formulas.)

The TLI and the Rasch score are both legitimate measures of student achievement.
However, asindicated below, they have very different characteristics. In this study we
investigate the extent to which major empirical findings are sensitive to the choice of
achievement scale. To make it easier to compare the results using both scores, we normed the
Rasch scale so that it has the same mean and standard deviation asthe TLI in the base year (at
each grade level). A separate appendix presents the technical details for how we computed the
Rasch scale.

Formulasfor Estimating the Rasch Scale and the Texas Learning Index (TLI)

The maximum likelihood estimate of the Rasch ability parameter &is given bya

6=C"(R) ®)

where C*(R) istheinverse function of the test characteristic curve (TCC) for the test
administered in year ¢. The test characteristic curveis equal to the expected raw score:

2 Since there is no closed-form solution to the inverse of the test characteristic curve, estimates of Rasch ability
parameters are typically obtained using numerical methods. Although thisis not particularly difficult or time
consuming, Wright (1977) presents formulas that allow direct computation of approximate estimates of Rasch
ability. These formulas were used by TEA to compute their Rasch estimates (which were used, in turn, to compute
TLI). The Rasch estimates used in this paper were obtained by solving equation (2).
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E(R)=C,6) =Y P(6:d) €)

i=1

that is, the sum over all test items of the probability that an individual with ability 8getsitem

i correct. In the Rasch model (and other item response theory (IRT) models), ability estimates for
students with extreme scores (zero correct (R=0) and zero incorrect (R=n)) are not defined. We
follow the common practice of assigning Rasch scores for these students as if their actual

number correct scoreswere R = 0.5 and R = n — 0.5, respectively. Asindicated above, the Rasch
ability parameter estimates are linearly transformed to obtain a Rasch scale that has the same
mean and standard deviation asthe TL1 in the base year (at each grade level):

Rasch Scale =a, +b,0 (4)
where a, and b, are the transformation parameters for grade g.

In order to obtain the TLI score in years other than the base year, the test chagacteristic
curve for 1994 is used to predict the raw score R,,, given 8 (computed in any year):

ﬁ94 = 94 (é) . (5)
The TLI isthen computed using

Given the assumptions of the Rasch model, the item probabilities in [3)]are given by the
logit function:

P(6.d) ={1+exp[-D(6-d,) ]} (6)

where d;, is the difficulty of item i inyear ¢, d, represents the vector of item difficulties, and D =

1.7.E|I n the next section, we will look at some graphs that depict the highly nonlinear relationship
(implied by formula (3)) between the Rasch scale and the TLI and other features of the two
scales.

A Comparison of the Texas Learning I ndex with the Rasch Scale

Figure 8.1 presents two graphs that compare the TLI with the Rasch scale for grade 3 in
1994. The graphs for other grades and years are very similar. The top graph plots the official
TLI, anumber that is rounded to two digits, against the Rasch scale. The bottom graph plots the
TLI, without rounding, against the Rasch scale. Due to the lack of rounding, the bottom curve

3 For the purpose of computing predicted raw scores (and ultimately the TLI), there is no need to “patch up” the 8
estimates for the zero-correct and perfect raw scores. If a student received a perfect (zero-correct) score in any year,
the predicted raw score on the 1994 test is also a perfect (zero-correct) score.

* The constant D = 1.7 scales 8o that the logit function closely approximates the standard normal cumulative
distribution function (a so the probit function).
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exhibits greater smoothness than the top curve. Both graphs make the sﬁne point: relative to the
Rasch scale, the TLI significantly rolls off achievement at the high end.*In fact, the curve
asymptotically approaches a maximum TLI score of 93. This means that the TLI is ssimply not
equipped to register (possibly future) increases in achievement beyond a maximum level. This
implies that achievement growth near the high end of the distribution will appear more modest
when measured with the TLI than with the Rasch scale. Furthermore, the distribution of the TLI
islikely to be substantially skewed to the left, relative to the Rasch scale.

The latter prediction is evident in Figures 8.2 to 8.5. These figures present the distribution
of the Rasch scaleand TLI in grades 3 and 8 in two different years, 1994, the base year, and
2000, thefinal year of data. Asindicated in Figure 8.2 (top graph), the distribution of the Rasch
scalein 3" grade in 1994 |ooks approximately bell-shaped. The distribution of the TLI (bottom
graph), on the other hand, is heavildy skewed to the left and piled up on the right side. Figure 8.3
indicates that the distribution of 3™ grade achievement shifted significantly to the right from
1994 to 2000. The average Rasch score increased from 69.78 to 80.65. The average TL|
increased somewhat less, from 69.78 to 78.48. Asin 1994, the distribution of the Rasch scorein
2000 is reasonably symmetric with a modest concentration of data at the high end. The standard
deviation of Rasch scale scoresincreased from 15.32 in 1994 to 16.69 in 2000. In contrast, the
standard deviation of the TLI decreased from 15.32 in 1994 to 12.69 in 2000 and the test
distribution became even more skewed. Figures 8.4 and 8.5 tell asimilar story with respect to 8"
grade test scores, although the differences between the Rasch scale and TLI are even more
pronounced. Finally, Tables 8.1 to 8.6 indicate that at all grade levels the Rasch scaleand TLI
exhibit completely different patterns with respect to the spread of test scores. The Rasch scale
paints a picture of rising average test scores and expanding spread (as measured by the standard
deviation). The TLI tellsa different story—rising average test scores and declining spread.
These simple statistics highlight the fact that conclusions about the efficacy of programs and
educational reforms may be quite sensitive to the choice of achievement scale. As aresult, we
will present results later in the study that make use of both the Rasch scale and the TLI.

Evaluation M ethods

This section explains the statistical models and methods we use in our analyses. The first
part presents a conventional post-achievement on pre-achievement model with two levels, a
student level (the “micro,” or level-one equation) and a district level (the “macro,” or level-two
eguation). The second part investigates the validity of the model in light of the fact that the
available set of explanatory variablesisthin (asisthe case with ailmost al administrative data
bases). The third presents methods for correcting for measurement error in achievement tests.
The final section presents an estimation strategy that is optimized for very large data sets (in our

® Achievement is also theoretically rolled off at the low end but there are very few students with test scoresin this
region.
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Figure 8.1. Scale transformation: Texas Learning Index (TLI1) and the Rasch scalein grade 3,
1994.
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Figure 8.2. Distribution of the Rasch scale and Texas Learning Index in grade 3, 1994.
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Figure 8.3. Distribution of the Rasch scale and Texas Learning index in grade 3, 2000.
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Figure 8.4. Distribution of the Rasch scale and Texas Learning index in grade 8, 1994.
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Figure 8.5. Distribution of the Rasch scale and Texas Learning Index in grade 8, 2000.
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Table 8.1
Average Test Scores and Demographic Characteristics by Year, Grade 3

1994 1995 1996 1997 1998 1999 2000

Statistics Computed by WCER

TLI Mean 69.78 72.63 75.57 77.56 77.21 78.07 78.48

Std. Dev. 15.33 15.25 14.89 13.47 13.07 12.38 12.70

Rasch Scale Mean 69.78 73.25 77.18 79.40 78.45 79.60 80.65

Std. Dev. 15.33 16.19 17.07 16.62 15.92 15.74 16.69

Ethnicity Black Mean 0.141 0.143 0.146 0.145 0.144 0.142 0.137
Hispanic Mean 0.286 0.288 0.290 0.297 0.306 0.322 0.359

White Mean 0.541 0.536 0.532 0.530 0.527 0.518 0.490

Other Mean 0.015 0.015 0.015 0.016 0.014 0.012 0.013

Mixed ReportMean 0.018 0.018 0.017 0.013 0.009 0.006 0.001

Gender Mean 0.501 0.500 0.504 0.503 0.501 0.498 0.502
Disadvantaged Mean 0.420 0.427 0.440 0.455 0.469 0.473 0.504
Sample 227076 218998 219919 223059 224648 223562 221098

Statistics Reported on Website of Texas Education Agency
TLI Mean 69.7 72.7 75.4 77.3 77.0 77.9 78.3
Sample 240420 235238 238002 243208 249463 253022 263481

Table 8.2
Average Test Scores and Demographic Characteristics by Year, Grade 4

1994 1995 1996 1997 1998 1999 2000

Statistics Computed by WCER

TLI Mean 69.87 73.92 76.16 77.82 78.87 80.54 81.03

Std. Dev. 15.16 14.00 13.69 12.71 11.85 10.25 10.90

Rasch Scale Mean 69.87 74.35 77.54 79.32 81.19 83.14 84.95

Std. Dev. 15.16 15.83 16.53 15.78 15.97 15.11 16.27

Ethnicity Black Mean 0.137 0.136 0.138 0.140 0.139 0.138 0.130
Hispanic Mean 0.297 0.296 0.301 0.310 0.315 0.328 0.360

White Mean 0.536 0.534 0.527 0.517 0.516 0.509 0.491

Other Mean 0.016 0.016 0.016 0.017 0.018 0.015 0.013

Mixed ReportMean 0.013 0.018 0.018 0.016 0.013 0.009 0.006

Gender Mean 0.498 0.498 0.501 0.501 0.502 0.497 0.496
Disadvantaged Mean 0.416 0.422 0.433 0.447 0.461 0.476 0.492
Sample 223607 225205 227058 230670 233130 228620 233228

Statistics Reported on Website of Texas Education Agency

TLI Mean 69.8 73.8 76.1 77.6 78.7 80.5 80.9
N 236303 240071 235762 247002 250832 251193 264865
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Table 8.3

Average Test Scores and Demographic Characteristics by Year, Grade 5

TLI Mean

Std. Dev.

Rasch Scale Mean

Std. Dev.
Ethnicity Black Mean
Hispanic Mean
White Mean
Other Mean
Mixed ReportMean
Gender Mean
Disadvantaged Mean
Sample
TLI Mean
N
Table8.4

1996

1997

1998

Statistics Computed by WCER

1994 1995
70.23 73.78
15.13 14.87
70.23 74.24
15.13 16.09
0.135 0.135
0.309 0.310
0.528 0.525
0.016 0.017
0.011 0.013
0.499 0.498
0.407 0.424

228383 226018

76.22
13.71

77.02
16.06

0.132
0.309
0.525
0.017
0.017
0.501
0.431
236624

79.33
12.29

81.11
16.10

0.133
0.319
0.513
0.018
0.018
0.501
0.442
239639

80.83
11.59

83.35
16.09

0.137
0.326
0.503
0.018
0.016
0.502
0.455
242323

1999

83.04
10.13

87.37
16.21

0.135
0.338
0.496
0.019
0.012
0.498
0.470
239675

Statistics Reported on Website of Texas Education Agency

Average Test Scores and Demographic Characteristics by Year, Grade 6

TLI Mean
Std. Dev.
Rasch Scale Mean
Std. Dev.
Ethnicity Black Mean
Hispanic Mean
White Mean
Other Mean
Mixed Report Mean
Gender Mean
Disadvantaged Mean
Sample
TLI Mean
N

70.2 73.8 76.2 79.2 80.7
241963 240577 252219 254528 256008
1994 1995 1996 1997 1998

Statistics Computed by WCER
69.81 71.69 75.65 77.62 79.28
15.23 14.26 13.22 12.91 11.67
69.81 71.50 76.15 79.02 81.50
15.23 15.55 15.54 16.18 15.70
0.135 0.134 0.132 0.129 0.130
0.319 0.325 0.330 0.333 0.345
0.520 0.512 0.507 0.502 0.488
0.017 0.017 0.018 0.019 0.019
0.008 0.012 0.013 0.017 0.017
0.500 0.500 0.502 0.503 0.504
0.397 0.417 0.439 0.444 0.457
236264 235222 240656 254166 256868

Statistics Reported

69.7
248142

71.7
249185

132

83.0
254344

1999

81.27
10.86

84.95
16.65

0.134
0.355
0.475
0.020
0.016
0.500
0.469
253774

on Website of Texas Education Agency

75.6
255797

77.5
267428

79.2
268503

81.2
263847

2000

83.99
9.55

89.33
16.20

0.130
0.360
0.485
0.016
0.009
0.496
0.493
238753

83.9
263231

2000

81.95
10.10

85.41
15.62

0.131
0.366
0.471
0.020
0.012
0.500
0.487
252164

81.9
266829



Table 8.5.

Average Test Scores and Demographic Characteristics by Year, Grade 7

1995

1996

1997

1998

Statistics Computed by WCER

70.92
15.23

71.50
16.42

0.132
0.329
0.513
0.018
0.008
0.500
0.397
235539

74.30
14.36

75.35
16.91

0.132
0.332
0.506
0.018
0.011
0.504
0.420
243272

76.34
13.10

76.91
15.41

0.129
0.336
0.502
0.020
0.013
0.504
0.434
250259

78.22
12.57

79.44
16.04

0.128
0.339
0.495
0.020
0.017
0.504
0.443
260077

1999

80.39
12.06

86.34
18.73

0.132
0.349
0.482
0.021
0.017
0.500
0.452
257337

Statistics Reported on Website of Texas Education Agency

1994
TLI Mean 69.68
Std. Dev. 15.39
Rasch Scale Mean 69.68
Std. Dev. 15.39
Black Mean 0.133
Hispanic Mean 0.319
White Mean 0.525
Other Mean 0.017
Mixed ReportMean 0.005
Mean 0.500
Mean 0.367
232149
TLI Mean 69.6
N 245376

Table 8.6

70.9
249928

74.3
258200

76.2
263350

78.1
271295

Average Test Scores and Demographic Characteristics by Year, Grade 8

TLI Mean

Std. Dev.

Rasch Scale Mean

Std. Dev.
Ethnicity Black Mean
Hispanic Mean
White Mean
Other Mean
Mixed Report Mean
Gender Mean
Disadvantaged Mean
Sample
TLI Mean
N

1994

69.25
15.43

69.25
15.43

0.132
0.314
0.535
0.017
0.001
0.497
0.339
218012

1995

1996

1997

80.4
266437

1998

Statistics Computed by WCER

68.79
14.90

68.30
14.98

0.130
0.323
0.524
0.018
0.005
0.496
0.363
225479

Statistics Reported

69.1
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14.91
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0.332
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0.339
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0.503
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0.016
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0.469
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80.11
11.04
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0.128
0.339
0.495
0.021
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0.431
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2000

81.54
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85.33
15.80

0.129
0.352
0.480
0.022
0.017
0.498
0.446
254410

815
263858



case, well over 10 million observations). These methods produce consistent parameter estimates
using SAS software with computer run times of less than 10 minutes on a personal computer.

A Multilevel Model of Student Achievement
The model used here takes the form of a conventional multilevel “post on pre” model

(postachievement on preachievement) where, at this point, we assume that all variables are
measured without error. The two levels of the model are given by:

J= g

th =V, gYig-lJ-l + 'ng'X igt + z QigtSijgt +£igt (7)
J=1
ajgt - 5Vngt + rjgt (8)

where i indexes students, j indexes districts, g indexes grades, ¢ indexes years, and J,, = number
of districtsin grade g and year .

Equation|(7)|captures the student-level determinants of growth in student achievement.
Yige and Yig.; s represent student mathematics achievement in years ¢ and (¢- 1), respectively (for
student i in grade g); X, represents student characteristics (such as gender, race/ethnicity, and
income status); S;¢; 1S azero/one indicator that is equal to oneif student i attends school in
district j, zero otherwise; y,, B,,and a,, are parameters; and ¢, isastudent-level error term.

The parameter a,, measures district productivity, a value-added measure of the contribution of

district j to growth in mathematics achievement in asingle grade (g) and year (7). We follow the
convention of “norming” the a parameters so that their averageis zero in the base year (1994-
1995) in each grade. Note that all of the parameters are allowed to differ by grade (and hence are
subscripted by g). It might be reasonable to impose the restriction that ), and S, are identical
across grades if the achievement scores at different grade levels were measured on a common
(vertically equated) scale. Since thisis not the case with the Texas achievement data, we do not
impose this restriction. We do, however, consider the possibility that the parameters may change
over timein response to changes in policy. Equation capturesthe district-level determinants
of district productivity. W, represents district program variables—in particular, whether the

district participated in the Urban Systemic Initiative (USI) or not; O is aparameter vector; and
r, 1sadistrict-level error term. One of the major strengths of this model specificationisthat it is

straightforward to measure school district productivity by grade and year. Thisis essentia if the
determinants of productivity (that is; programs and policies) also vary across grades and over
time, asthey do in this study.

Although the above model has been used extensively to evaluate educational programs
and policies, we address several potential threats to the validity of the model, in particular, weak
control variables and measurement error in prior achievement. These issues are considered
below.
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| nterpretation of a Model With Weak Control Variables

One potential problem with conducting evaluation research using administrative datais
that student and family information is typically rather thin. Variables such as parental education,
family status (two-parent or one-parent family), parental income, parents' occupation, and
parents’ attitudes toward education are known from previous research to influence growth in
student achievement, but are rarely available in administrative data. Thisisthe case in the
present study. Asaresult, it isimportant to understand how this affects the validity of the
anaysis.

To simplify the notation, consider the student-level model for 2™ gradein a given year:
Y = Yoty + BX, +058, +&,, )

where Y, and Y, are the post-test and pre-test, respectively, X, isavector with aweak set of
student-level control variables, and S,, isavector of school district indicators. (The year

subscripts are suppressed for convenience.) Given that the control variables are weak, it is
inappropriate to adopt the conventional assumption that the student-level error term is random
and uncorrelated with the right-hand side variables. Instead, we assume that the error term
consists of two orthogonal components: a random component e,, and a component u,, that may

be correlated with the regressors; that is:
&y Ty Ty,

To alow for the possibility that that «,, may be correlated with the regressorsin equation [9) we
define the following linear predictor equation:

uy =AY, +/11'X[ +/]2’S2; Wy, (10)
where w;, is by definition uncorrel ated with the regressors. Substituting this equation into (3)
yields:

Y2i = (yz +A2)le +(:32 +/11)'Xi +(0’2 +/‘2)’S2i +w2i +82i- (11)

Asindicated, the A parameters capture the bias in the parameters due to the weak regressors.

Given the possibility that the model parameters could be biased if the control variables
areweak, it isimportant to consider whether there is some other, perhaps more statistically
advanced, method for obtaining consistent parameter estimates. One possibility is the dynamic
fixed effects model studied by Anderson and Hsiao (1981, 1982). (Also see Hsiao, 1986). To
implement this model, we add an equation for 3 grade achievement (for the same cohort of
students asin 2™ grade). This yields the following pair of equations:
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Y, = oYy, + BX, +0,S,, +u, +e, (12)
Yy =)l + IB;X:' + 0;35&' tuy tey '

Assume that the following conditions hold:

* Theparameters yand Sareidentical in the models for grades two and three. (The critica
assumption isthat yisidentical in both equations.)

» Unobserved differences in student characteristics are captured by atime-invariant
component u, ; that is, u, =u,, =u,,.

L

* Therandom components e,, and e,, are not (serially) correlated.

Given these assumptions the two equations can be differenced to eliminate the time-invariant
component u, , yielding:

Y; - Y, :y(YZi _le) +aéS3i _dZSZi tey —e, .

1

(13)

It is straightforward to estimate this equation using the method of instrumental variables
(Anderson & Hsiao, 1981).*At first glance, it appears that this approach yields estimates of
school district effects in both second and third grade. Unfortunately, thisis correct only if

S, #S,; that is, only if at least some students move between districts between second and third

grade. In fact, this approach will yield precise estimates of a; and a; only if there is substantial
mobility between districts. This condition is unlikely to be met.

In the absence of substantial district mobility, one option isto use to estimate yand
then estimate the other parameters of the model given the consistent estimate of y(cal this j).
Thisis equivalent to estimating the following equation for Y>; (and similarly for Y3)):

Y, _I}le = BX, +a,S,, tu; te,. (14)
Unfortunately, this method does not eliminate bias due to the possible correlation between u; and
X; and S>;. Indeed, asis suggested below, this bias may be larger than the bias obtained from the
standard model (see equation ((11)). To see this, define the following linear predictor equations:

ui = le + @SZi +wll (15)
Y, :,7:I’.Xi +,7,2S2i Tw, (16)

where by definition w;; and w»; are uncorrelated with the regressors. Substituting [15)]into
yields:

® Given that (Y.-Y,) is correlated with the error term (e;-e,), the acceptable instrumental variablesinclude Y; and any
prior lagged values of Y, S3, S,, and X.

" This method is suggested by Hsiao (1986). Note that some efficiency gains could be obtained by using the general
method of moments (GMM) to estimate equations (13) and (14) jointly.

136



Yy = VY, =(B+ @) X, +( 0 + @) Sy +wy ey (17)
Asindicated, the gparameters capture the bias in the parameters due to the weak regressors.

Now, let’s compare the biases obtained from the two different approaches for the school
district effects. It can be shown that the biases from the two approaches are given by:

Conventiona Approach: Bias= A, =@ -Ay7, (18)
Difference Equation Approach: Bias= @ (29

Notice that the biasfro& the conventional approach is the sum of two terms. If the vectors ¢ and
1> have the same sign,” then the two termsin may be partially offsetting. As aresult, the
conventional approach (which yields a biased estimate of the pretest parameter if the control
variables are weak) may yield estimates of school district effects that are actually less biased
than the approach (based on the difference equation) that yields a consistent estimate of the
pretest parameter: that is, if the control variables are weak, the best strategy may be to allow the
pretest variable Y; to serve as a proxy for the omitted variables. The conventional method does
this. Thisyields a (presumably) upward biased estimate of the pretest parameter (A, >0), but an

estimate of the school district effect that may be less biased than other estimates.

The bottom line is perhaps somewhat surprising: the conventional approach may yiel ﬁ
estimates of school district effects that are reasonable, even if the control variables are weak.” In
any case, the difference equation approach discussed above is not an available option in the
present study due to tfﬁact that the achievement data used in this study were not vertically
equated across grades.““As aresult, it is unreasonable to assume that pretest parameters from
different grade-level models are identical, a requirement of the difference equation approach.

In the remainder of this paper, we build on the conventional “post on pre” value-added
model. To keep the notation simple, we drop the bias parameters (A’ s) and, in effect, redefine the
level-one parameters (), 8 and a) to incorporate the bias due to thin control variables. In the next
section, we extend this model to control for measurement error in achievement scores.

Controlling for Measurement Error in Achievement Scores
As demonstrated in Meyer (1992, 1999), measurement error in prior achievement, if

uncorrected, induces adownward biasin the pretest parameter J; and causes biasin al of the
other parameters in the model. Meyer presented two methods for correcting for measurement

8 Consider the following thought experiment. Suppose that the component u; is a linear combination of the following
omitted variables: parental education and parental income. It seems likely that school districts (or schools) that have
high average achievement scores (Y;;) also have high average parental education and parental income (u;). This
impliesthat ¢ and 77, have the same sign, or equivalently, that the parameter vectors are positively correlated across
districts.

° A topic for future research is to devel op estimation methods that yield, given reasonable assumptions, consistent
estimates of all parameters.

19 The test scores were horizontally equated across years at each grade level.
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error, the errors in variables (EV) approach and the instrumental variables (1V) approach. (See
Fuller, 1987) for a comprehensive presentation of these methods.) The EV approach uses
externally provided information on the variance of measurement error to correct the sample
variance-covariance matrix. The IV method corrects for measurement error by using
instrumental variables to obtain error-free predictors of variables measured with error. The
validity of the IV approach depends on whether the selected instrumental variables satisfy the
required conditions—namely, that the variables are correlated with regressors in the model but
uncorrelated with in-equation error and all errors in measurement. Below, we discuss how the
EV and IV methods were implemented in the present study.

The key to using the EV approach isto obtain external information on the variance of
measurement for all variables measured with error. In the previous studies by Meyer (1992,
1999), achievement was measured using raw (number right) scores. In the case of raw scores, it
is customary to assume that the variance of test error is constant for all individuals and to
compute this variance using the formulas for Cronbach’s coefficient alpha (or, equivalently,
Kuder-Richardson formula KR-20) (Allen & Yen, 1979). Most test developers routinely provide
this information for the tests that they publish.

In the present study, we need to correct for measurement error in mathematics
achievement as measured by the Rasch scale and the TLI. This poses some new technical
wrinkles. With respect to the Rasch scale (or any scale developed using an aternative item
response theory (IRT) model), it is customary to assume that the variance of test error differsasa
function of true achievement (that is, achievement measured without error). Thisis, in fact,
implied by item response theory (Lord, 1980). We next consider two alternative methods for
estimating this variance:

* Approach 1: an approach based on afinite sample formulafor the error variance.
» Approach 2: the conventional approach based on an asymptotic (maximum likelihood)
formulafor the error variance.

A magjor finding of the study is that the finite sample approach provides substantially different
and more accurate results than the conventional approach. This approach deservesto be used
more widely where information on the accuracy of student test scores is needed. Both estimates
of measurement error are used to implement the errorsin variable estimators. They are referred
to asthe EV1 and EV2 methods.

The standard EV approach corrects for measurement error, but it does not explicitly treat
the fact that the measurement error variances of the pretest and posttest variables are not constant
(homoscedastic). As aresult, we experimented with aweighted EV estimator that corrects for
measurement error and heteroscedasticity in the error term. Since this produced estimates (and
standard errors) that were nearly identical to those obtained using the standard EV approach, we
do not report the estimates in this study.

The key to implementing the IV approach isto find a credible set of instrumental

variables. Asindicated above, an acceptable instrumental variable must be correlated with
regressors in the model but uncorrelated with the in-equation error and all errors in measurement.
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Possible instrumental variables include twice-lagged achievement Y., ., and the other regressors
Xiee and Sje, (the latter assumed to be measured without error). Twice-lagged achievement
satisfies two of the three conditions for an instrumental variable: it is certainly correlated with
prior achievement Y,.; .., and it is reasonable to assume that it is uncorrelated with the
measurement error component of prior achievement. But, is it uncorrelated with the in-equation
error &,,? In amodel with rich control variables this may be a very reasonable assumption. In a
model with weak control variables—our situation—it is likely that twice-lagged achievement is
correlated with the nonrandom (persistent) component of the in-equation error (u;,). Suppose, for
example, that the nonrandom error component includes parental education and income. These
variables are surely correlated with prior achievement and twice-lagged achievement and, more
generally, achievement measured at any grade level.

Despite the fact that twice-lagged achievement does not satisfy one of the conditions for
an instrumental variable, IV estimates based on it as an instrumental variable may be useful asa
check onthe EV estimates. Asaresult, we report EV and IV estimates |ater in the study. For
reference, we aso report ordinary least squares (OLS) estimates that do not correct for
measurement error. Finally, we report 1V estimates that also control for heteroscedasticity in the
error term (referred to as the 1V-H method). The latter estimates are nearly identical to the IV
estimates.

Estimation Methods for Large-Scale Datasets

Our objective isto develop computationally efficient methods of estimating multilevel
errorsin variables (EV) and instrumental variables (1V) models where the number of students
and districts in the sampleis large—over amillion student observations at a single grade level.
Thisisimportant because most software packages designed for multilevel models do not offer
the option to correct for measurement error using either the EV or IV approaches (for a sample
of any size) and most are not well equipped to handle large datasets.

They key to efficient estimation of multilevel models with large data setsis to estimate
each level equation in stages. This approach is a bit difficult to implement with small to modestly
Sized data sets, so many software packages (such as HLM) estimate al level equations jointly, an
approach that is also difficult to implement. It turns out, perhaps surprisingly, that most of the
difficulties posed by the multi-stage estimation strategy disappear with very large data sets. In
contrast, the joint estimation strategy becomes harder to implement as the sample size increases.

Let’s begin by devel oping the multistage approach, given the assumption that there is no
measurement error. This assumption will subsequently be relaxed.

Level-one model with no measurement error. To Simplify the presentation, we focus on the level -
one (student-level) equation for asingle grade (2™ grade) and year. This equation, with bias

parameters added to capture bias due to weak regressors, is listed above—equation . To
simplify the analysis, it is rewritten below in a different form:

YZij :lel + EX,] +aj +£g/ (20)
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where the multilevel structure of the datais explicitly recognized by including a district subscript
j and a student-within-district subscript i and the grade and year subscripts are dropped for
convenience. In this equation, the school district parameter a; can be treated as afixed effect and

hence differenced out of the equation (Greene, 2000; Hsiao, 1986). To implement this, take the
school district mean of

Y, = VY, BX, +a, +E, (21)

where the bar over avariable designates the variable as a district mean and the dot in place of the
i subscript indicates that the mean is computed over studentsin each district j. Subtracting
from sweeps away the fixed effect a:

(% —1,) =y, —%)) + B(X, —X ) +(&, —E)). (22)

This equation can be estimated quite easily even if the number of districtsislarge. The variables
in parentheses are constructed by computing district means and then subtracting them from the
student-I regressors. This method isreferred to as the “ deviations from group means’
approach.

Given estimates of the slope parameters y and [z’ , estimates of the district fixed effects
and the precision and covariance of these effects can be computed as:

a, :?2.j ‘(Vz.j +/8’)?,j)

J i 0’\-2 B B
w; = Va(a,|a)) ~ *Zi2n 2
o (23)
w, = Cov(a,,a,|a,,a,)=2,%,7Z,
& = (Sum of Squared Errors)
(N-K -J)

where §° isan estimate of the variance of the student-level error, n; isthe number of studentsin
districtj, 2, isthe variance-covariance matrix of the estimated vector of slope coefficients

i =[a,f],and 2, =[1,,,X'].
Note that the precision matrix X, dependson N. Indeed, as NV increases, the matrix

convergesto amatrix of zeros. Hence, with large data sets, the precision and covariance of the
district effects are approximately equal to:

1 The alternative approach to estimating (20) is to include in the model indicator variables for al districts. If the
number of districts us much larger than 100, this method is either very slow or simply infeasible. The Texas data
includes about 1000 districts.
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a s n, (2 4)

It turns out that this fact greatly simplifies estimation of level-two equations, as is discussed
below.

Level-two model for a given grade. Given estimates of school district effects, the parameters of
the level-two model—equation [8)}—can be estimated using weighted least squares (WLS).
Weighting is required for efficient estimation because, as is demonstrated below, the variance of
the error in the stage-two equation is not constant. To obtain alevel-two equation defined in
terms of the estimated district effect (rather than the true (unknown) district effect), itis
necessary to explicitly allow for the error in estimating this effect:

dfgt :ajgt +ngt (25)
where v, isthe error in estimation. The stage-two equation for a given grade is then given by:

éljz = 5VV]£ +rjt +Vjt (26)
= 5VVjt +fjt
where the error term £, is composed of two parts: the in-equation error r;;, assumed to have

constant variance (homoscedastic), and the error in estimation v;,. Asindicated in the error
component v, isnot, in general, independent and identically distributed (11D).

Despite the absence of 11D errors, unbiased estimates of the parameters of this equation
could be obtained using ordinary least squares (OLS). In small and medium-sized data sets these
estimates would be inefficient and the reported standard errors could be incorrect. This problem
could, in principal, be addressed by estimating the model using generalized least squares (GLS),
but with large data sets this approach would be difficult if not impossible to implement. As
indicated in however, the dependence between estimation errors vanishes in large data sets.
Thus, in large data setsit isonly nﬁaﬁaary to address the fact that the variance of the error in
estimating c“rj, (V) isnot constant.~~This can be done quite easily, using weighted least squares

(WLS).

To implement WLS, wefirst eti mateusi ng OLS. Second, we compute the variance
of f;; using the estimated residuals from this regression. Third, we estimate a weighted regression
where the weighted is equal to the inverse of the estimated variance of the residual ;.. In large
samples, the formulafor this varianceis equal to:

121 fact, in data sets where the number of studentsin each district is large (n; islarge), the variance of v,
approaches zero, thereby eliminating the heteroscedasticity problem. In Texas, districts vary greatly in size, so we
address the problem of heteroscedasticity.

141



2 =Va(f,) =0 +w (27)

t,jt

where ¢? isthe variance of the level-two in-equation error, assumed to have constant variance,
and the second term is the variance of the error in estimating c“rj, (which can easily be computed

using (23)). In order to compute the variance for each level-two observation (with subscript j7), it
is necessary to estimate . If the number of observations in the level-two model is large (so that

the slope coefficients dare precisely estimated), then an estimate of o is given by:

07 =3 > (/i =@, (N, =K) (28)

where fjt istheresidual from OLS estimates of @and N> isthe number of observations and K

is the number of regressors in the level-two model. Hanushek (1974) provides an estimate of o?

for the case where the number of observationsin the level-two model is not large. In this study
(with about 6,000 level-two observations in 1,000 districts over six years), formula[28)|was
quite accurate.

Level-two model for multiple grades. One new issue arises with alevel-two model that
encompasses multiple years and grades, namely, the fact that the errors in estimating school
district effects could be correlated for pairs of effects that are based on the same cohort of
students, for example, 4™ grade studentsin 1995 and 5™ grade studentsin 1996. However, as
indicated above, OLS estimates (and WLS estimates) of level-two parameters are unbiased even
if some or al of the errors are dependent across observations. The problem with dependent errors
istwofold: the WLS estimates could be inefficient (in the sense of failing to estimate parameters
with the highest precision) and the reported standard errors could be incorrect. We expect that
these effects are likely to be small or nonexistent in our situation because the variance and
covariance of the estimated school district effects are generally quite small because the number
of studentsin most districtsis quite large (obviously much larger than the number of students per
school). Furthermore, in the multiple-grade level-two model, most of the pairs of effects are
based on different cohorts and thus are uncorrelated. This could be a greater problem if the data
for astudy were based on a single cohort, but that is not the case here.

Level-one model with measurement error. In this section, we discuss how to control for
measurement error if the level-one mode is estimated using the “ deviations from group means’
approach advocated above. Asindicated in equation [22)] the pretest variable, expressed asa
“deviations’ variable, isequa to(Y;,, — Y, ) - The average variance of the measurement error
component of this variable is therefore equal to:

) 1
Bjzecfi2)|
o’ d (29)

' N
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where aj.j, is the variance of measurement error for student ; inyear ¢ (in agiven grade). This

average variance can be computed quite ssmply given externally provided information on the
variance of test measurement error for each student. The average variance is then used as an
input to the EV method to correct for measurement error. Note that centering the pretest variable
on the district mean reduces the average measurement error variance only sightly.

In the next section, we consider two alternative approaches for measuring variance of test
measurement error for each student.

Exact Finite Sample and Asymptotic Methods for Estimating the M easurement Error
Characteristics of the Rasch Scale and the Texas L ear ning I ndex

We considered two alternative methods for estimating the measurement error
characteristics of the Rasch scale and the Texas Learning Index. Our ultimate objective was to
compute the average variance of measurement error as discussed in the previous section. It is
important to obtain accurate measures of measurement error variances because incorrect (biased)
values of these variances will yield biased EV estimates of school district effects (and all other
parameters). The first section reviews the most commonly used method for computing
measurement error variances, the maximum likelihood approach. There are two potential
problems with this approach. First, since maximum likelihood estimates of Rasch ability
parameters are technically undefined for scores at the absolute extremes (perfect and zero-correct
scores), the theory provides no suitable estimates of precision for the Rasch values that are
assigned to these scores. Second, the maximum likelihood method yields estimates of ability and
thelr precision that are consistent but not unbiased; that is, the estimates converge to the true
values as the number of test items approaches infinity. Given that the number of test items on
most, if not al, testsis relatively small (typicaly no more than 50 items), these estimates may
exhibit significant bias, particularly at the extremes of the distribution. In the second section, we
present an alternative method of computing error variances based on exact finite sample
methods. This method yields values of error variances that are unbiased even when applied to
tests with very few test items. We find that the finite sample approach produces much better
estimates of error variances, particularly at the extremes. Finally, we show how to use the finite
sample approach to compute error variances for the Texas Learning Index.

Maximum Likelihood Estimation of Achievement and Its Precision in the Rasch Model

Given estimates of the item difficulties for an assessment, maximum likelihood (ML)
estimates of ability can be computed using equation The asymptotic sampling variance
(precision) of the maximum likelihood estimator is given by the inverse of the information
matrix; that is

i=n

i=1

02,(8) = Var (8 6) ={D2 e(ad,)[l—e(ad,)]}_ (30)
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where the item probabilities are defined in @(Lord, 1980).E|Although the variance is defined in
terms of the true &, thisvalue is unknown. Thus, it is customary to evaluate at the estimated
value of &

One of the problems with the ML estimator isthat it is undefined for perfect and zero-
correct scores. (Technically the ML estimates associated with perfect and zero-correct raw scores
are positive and negative infinity, respectively.) Asaresult, it is customary to assign arbitrary
upper and lower bound values to the extreme scores. One commonly used ad hoc method of
generating bounds is to compute the ML estimates associated with raw scores of (n —%2) and %2,
respectively. The variance of these estimatesis then computed using One apparent problem
with this approach isthat it produces estimates of error variances that are enormous (see below
for specific estimates). A second (possible) problem with the ML estimator isthat it yields
estimates of achievement and precision that are consistent but not unbiased. Given that the
number of test items on most, if not all, testsisrelatively small (typically no more than 50
items), these estimates may exhibit significant bias, particularly at the extremes of the
distribution. In the next section we present an alternative method of computing error variances
based on exact finite sample methods.

Exact Finite Sample Estimation of Precision in the Rasch Model

In our analysis, we devel oped formulas for computing the exact finite sample formulas of
the sampling variance for the ML estimator of Rasch achievement. Asis the case with the
asymptotic sampling variance, the formulas developed below are a function of the true
(unknown) achievement parameter 8. The key to this approach is that the formulas are defined as
the summation over the raw (number right) score, a sufficient statistic in the Rasch model (as
opposed to the summation over items—asin [3)). Asindicated in the next section, this approach
also works for computing the sampling variance of the TLI, since this scaleis also afunction of
the raw score—see equations|(1)]and

We are interested in the formulas for the conditional mean and variance (given ) of a
scaling function S(r) of the raw score r. In our application, the scaling functions yield the Rasch
scale and TLI, respectively. These formulas (Kolen, Zeng, & Hanson (1996) and Lee, Brennan,
and Kolen (2000) are given by:

Conditional Mean: u(6) = ES(0) = i T (6S(r) (31)

r=0

13 The precision formulas considered in this section all neglect possible uncertainty due to imprecision in the item
parameters. Thisis areasonable assumption if the item parameters are estimated from alarge sample of individuals
(asisthe casein this study).
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Conditional Variance: o’ (6) = E[S(r) — ES(r)]?

=3 7,(815() ~ES ()P (3)

=3 7,850 ~{ES()

where 77, (8) equals the probability of obtaining araw score of r in year ¢ (on the test form

administered in that year). Lord and Wingersky (1984) and Kolen, Zeng, and Hanson (1996)
provideacl ev%iecursi on formulafor computing these probabilities (given the item probabilities

defined in [6)).

To obtain the desired conditional mean and variance of the Rasch ability parameter, the
above formulas are evaluated using the scaling function that maps the raw score to the Rasch
ability parameter—equation (The results below are reported using the Rasch scale, alinear
transformation of the underlying Rasch ability parameter—see equation[(4)]) Let’s focus first on
the conditional mean. Asindicated in Figure 8.6, the mean of the Rasch scaleis very closeto the
true value except at the extremes. At the top of the distribution, the Rasch scale is biased
downward. Similarly, it is biased upward at the low end.*This indicates that the Rasch scale is
approximately unbiased over most of the distribution of scores. Nonetheless, since the
distribution of test scoresis concentrated on the high side of the distribution (which means that
the TAAStests are relatively easy for the student popul ation—see Figures 8.2 to 8.5), the Rasch
scale appears to be dightly biased against high achievers. Moreover, due to the shift in the test
score distributions over time, this biasis likely to increase over time.

Now, let’s focus on the finite sample and asymptotic approaches to computing the
magnitude of measurement error of the Rasch scale. Figure 8.7 reports the standard error of
measurement (SEM) on the 3" grade test in 1994 and 2000. (The results for other grades and
years were similar and thus are not reported.) Asindicated, the SEM profile computed using the
asymptotic formula exhibits the typical U-shaped pattern reported by all test developers that
score their tests using Item Response Theory models. In our case, the SEMs at the high and low
extremes of the distribution are more than four times the minimum SEM. In contrast, the SEM
profile computed using the finite sample formula exhibits an M-shaped pattern. Moreover, the
level of measurement error at the extremes is only dlightly higher than the minimum value.
Interestingly, the asymptotic SEM is abit too low near the center of the distribution.

The overal differences between the two methods of computing the measurement error
variance of the Rasch mathematics scale are summarized in Table 8.7. The table reports the

14 These formulas, as well as the ML formulas discussed above, assume that the assumptions of the Rasch model are
valid. The assumption of local independence (Lord, 1980) is particularly important since it is equivalent to an
assumption that the test measures a unidimensional achievement construct.

15 These effects at the extremes are inevitable. Given that tests have a finite number of items, thereisalways a
minimum and maximum test score. As atrue scorerises, it isincreasingly likely that atest score will bump into the
test ceiling. Similarly, as atrue scorefalls, it isincreasingly likely that atest score will crash into the test floor.
These effects can be avoided if atest includes items that are well matched (at the bottom, in the middle, and at the
top) to the abilities of the sample being tested.
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Figure 8.6. The conditional mean of the estimated Rasch scale in grade 3 by year.
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Figure 8.7. Rasch scale finite sample and asymptotic standard error of measurement in grade 3
by year.
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average error variance by grade and year for the two methods (and the associated sample sizes) _|E]
Note that in all cases the asymptotic approach exaggerates the level of measurement, in some
cases by almost 50%. Note also that the level of measurement error is highest in the early grades.
The bottom lineis that the traditional approach based on the ML estimator of the asymptotic
sampling variance works quite poorly. We strongly recommend the finite sample approach.

Exact Finite Sample Estimation of the Precision of the TLI

It is straightforward to apply the finite sample approach—formulal32)}—to compute the
sampling variance of the TLI. The relevant scaling function is equal to:

S(r) = Round{T[C%[Ct‘l(r)]]} (33)

where the relevant functions are defined in equations[(1)] [2), and [(5)] Note that the scaling
function explicitly allows for error due to the fact that the TL1 is rounded to an integer value.
This scaling function applies to both the base year (1994) and other years. In the base year,

however, the interior part of the function (that is, C,,[C*(r)]) simplifiesto the raw scorer.

Using the finite sample approach, the SEM profile for the TLI is graphed in Figure 8.8
for 3 grade in 1994 and 2000. In contrast to results obtained with the Rasch scale, the minimum
error variance is associated with the high and low test scores (the perfect and zero-correct
scores). Asin the case of the Rasch model, the computed error variances for the TLI are used to
obtain EV estimates of the TLI achievement model.

In the remainder of this study, we present our empirical findings. The next section briefly
describes the Texas data used in the study.

18 The average variance reported in the table is equal to the average of the computed individual-specific variances.
Asindicated in the text, the formulas for individual variances are theoretically defined in terms of the true score.
Since this score is unknown, however, we follow the practice of evaluating the formulas at the estimated score. It is
possible that the average variance computed in this way differs from the average variance based on the true
individual -specific variances. If so, then the measurement error corrections based on these computed variances could
be faulty. To evaluate this possibility, we conducted several Monte Carlo simulations to determine whether the
computed average variance differs from the true average variance. The simulations indicated that the two average
variances were very close.
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Figure 8.8. The standard error of measurement of the Texas Learning Index (TLI) in grade 3 by
year.
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Table 8.7
Average Measurement Error Variance by Method, Grade, and Year

Average Finite Sample Measurement Error Variance by Grade and
Year

3rd 4th 5th 6th 7th
1994 36.84 28.66 27.91 25.22 25.42
1995 41.97 29.98 33.16 22.97 24.18
1996 43.74 33.50 31.59 28.77 27.05
1997 46.24 35.47 33.46 31.20 27.32
1998 46.41 38.99 37.65 33.78 28.49
1999 49.81 39.02 40.61 37.16 42.52

Average Asymptotic Measurement Error Variance by Grade and
Year

3rd 4th 5th 6th 7th
1994 39.22 31.76 29.42 26.62 26.18
1995 49.77 37.58 41.91 25.68 26.35
1996 60.09 48.18 39.59 34.69 31.78
1997 69.08 49.21 47.61 41.88 29.33
1998 56.86 55.28 53.30 41.90 32.94
1999 64.84 57.01 53.52 52.46 50.46

Sample Size (Data Used in Achievement Model)
3rd 4th 5th 6th 7th

1994 195851 196677 200428 203956 198652
1995 195602 203434 202551 207982 206547
1996 196328 204943 212387 213514 213692
1997 202298 211026 217953 228390 222799
1998 200186 209899 218170 228349 228496
1999 201576 209523 219885 230078 230756
Total 1191841 1235502 1271374 1312269 1300942

Average Measurement Error Variance by Grade (Pooled Across

Years)
3rd 4th 5th 6th 7th
Asymptotic 56.75 46.70 44.49 37.63 33.16
Finite Sample 44.21 34.36 34.18 30.06 29.39
Ratio 1.28 1.36 1.30 1.25 1.13
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Data

In this section, we briefly consider the student-level data and the district-level data used
in the study. The most notable characteristic of the Texas data set isthat it is huge: over 10
million student-level observations and a thousand school districts. Student data is available for
seven different years, 1994-2000, and six different grades, 3-8. In each grade and year there are
approximately 220,000 to 260,000 student observations. Thus, there is more than enough data to
support separate analyses by grade and year, as well as analyses pooled across years at a given
grade level. All public school districts are included in the database, as are all public school
students who took the mathematics part of the Texas Assessment of Academic Skills (TAAS).

The TAASisadministered in the late spring of each school year. As previously indicated,
TAAS results are reported on a scale devel oped for the Texas Education Agency (TEA), the
Texas Learning Index (TLI). Extensive information on the TAAS and the TLI is provided at their
website (Www.tea state.tx.us/student.assessment/). TLI datawas provided to usby TEA. We
constructed the Rasch scale scores that underlie the TLI in order to be able to compare the two
different ways of scaling the test scores. As already indicated, information on student
characteristicsis rather thin. Included in the data are measures of race/ethnicity (Black,
Hispanic, White, other, and mixed reporting of ethnicity over time), gender (male, female), and
income status/indicator of economic disadvantage (whether a student participated in free lunch or
not).

Tables 8.1 to 8.6 (see above) provide summary information on the student test scores and
demographic characteristics by grade and year. The tables report mean TLI scores and associated
sample sizes as computed from our database and as reported in the TEA website. In al casesthe
means are close, but not exactly the same. The differences are probably due to differencesin the
samples used to estimate the means. In general, the samples used in our analyses appear to be
somewhat smaller than the samples used to compute the state statistics. Thisis probably due to
the fact that \A%i mposed stricter criteriafor including observations in the analysis sample than
the state uses.

As discussed previously, Tables 8.1 to 8.6 tell a story of rising test scores over time at all
grade levels—both with respect to the Texas Learning Index (TLI1) and the Rasch scale. The
details give quite a different picture, however. In 3% grade, for example, the average TLI
increased from 69.78 in 1994 to 78.48 in 2000, an increase of 8.70. Over that period, the spread
of the TLI, as measured by the standard deviation, declined from 15.33 to 12.70. Over the same
period, the average Rasch scale increased from 69.78 to 80.65, an increase of 10.87, and the
standard deviation also increased, from 15.33 to 16.69. Thisis astriking difference. It isdueto
the fact that the Rasch scale is more sensitive to growth at the high end of the achievement scale
than the TLI.

In addition to information on test scores, Tables 8.1 to 8.6 report the fraction of students
by demographic group. Note that the fraction of Hispanic students and the fraction of students
who are disadvantaged increased significantly over time at all grade levels. For example, in 3

1 We eliminated student observations with missing demographic information, missing or duplicative student
identifiers, and inconsistent grade enrollment data.
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grade in 1994, 28.6% of the students were Hispanic. By 2000, Hispanic representation had
increased to 35.9%. Similarly, the proportion of disadvantaged students in 3" grade increased
from 42.0 percent in 1994 to 50.4 percent in 2000. These trends may reflect underlying
demographic changes in the Texas school-aged population, or they may indicate that the system
did a better job of testing Hispanic and disadvantaged studentsin later years.

In order to explore these possibilities, we have plotted data on the number of students
tested for the three largest racial/ethnic groups in Texas (White, Hispanic, and Black) and for
disadvantaged and non-disadvantaged students by year and cohort (Figures 8.9 to 8.13). Cohorts
are identified by the year in which the students attended 3rd grade. Twelve different cohorts are
represented (1989 to 2000). Asindicated in the graphs, the number of Hispanic students tested
varied enormously over time and across cohorts. In general, the number of students tested
increased substantially over time (equivalently, over grades) within each cohort. For example,
the number of Hispanic students tested in the 1995 cohort increased from about 63,000 students
in 1995 (3" grade) to 90,000 students in 2000 (8" grade). In contrast, the number of Black
students tested varied minimally over time and across cohorts. The number of White students
tested varied somewhat, but with no strong overall trend.

Given the striking differences in the testing patterns of Hispanic and non-Hispanic and
disadvantaged and non-disadvantaged students, it may be useful to examine the above data using
aformal model of the incidence of testing. Define N,, as the number of students tested in grade g
and year ¢ for a given demographic group; £, as the number of students enrolled in grade g and
year ¢ for a given demographic group; and F,, asthe fraction of enrolled students tested in grade
g and year ¢. Then, the number of students tested is by definition equal to N, = E, [F,,. Since

we do not have information on student enrollments (only those tested), we cannot estimate
separate models of E,, and F,. As aresult, the two models must be combined to obtain an overall
model of the number of students tested. Since the two components of N, interact

multipl ifﬁtivel y, it is convenient to specify the enrollment and fraction-tested models as semi-log
models.

We suppose that student enrollment is determined by the size of the corresponding cohort
¢ (where, as above, cohort is defined by the year in which a student attended 3rd grade) and
possibly by changes in enrollment over time due to migration in and out of the state. A semi-log
model of student enrollment is given by:

E,=exp(0, +@ +vy,) (34)
where J. captures the size of cohort ¢, ¢ captures possible changes in enrollment over time, and

Vi 1S @n error component. We suppose that the fraction of students tested may vary
systematically due to possible differences in testing policies over time and across grades.

18 Since fraction tested is the outcome of individual events (tested/not tested), F,, could aternatively be modeled as
the average of individual probabilities (using, for example, probit or logit models of the probability that an
individual istested). This approach is less convenient than the one presented in the text because the resulting models
are highly nonlinear.
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Figure 8.9. Number of White students tested by cohort and year.
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Figure 8.10. Number of Hispanic students tested by cohort and year.
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Figure 8.11. Number of Black students tested by cohort and year.
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Figure 8.12. Number of nondisadvantaged students tested by cohort and year.
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Figure 8.13. Number of disadvantaged students tested by cohort and year.
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A semi-log model of this outcomeis given by:
F, =exp(@, +f3, +v,,) (35)

where a; is an effect parameter for year ¢, Sis an effect parameter for grade g, and v, is an error
component. Combining the two models and taking the log of both sides of the equation yields a
standard semi-log model of the number of students tested:

INN, =(a,+@)+ 5, +a +v, (36)
where v, =v,,, +v,,, .EIOne immediate consequence of defining the model in terms of students

tested (rather than the components E,; and F,) is that the year-specific parameters a; and ¢
cannot be separately estimated. (Only their sum can be estimated.) If we assume that migration
in and out of the state isrelatively small, then the estimated year-specific parameter may largely

19 Some of the parameter symbols used in the above model are also used elsewhere in this chapter. The symbols
mean different thingsin the different models.
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reflect a;. In any case, to simplify our notation, we will drop ¢ from the model. Asaresult, a;
should be interpreted as including year effects with respect to enrollment and fraction tested.

Apart from the identification problem discussed above, thereis alarger identification
problem that flows from the fact that cohort, year, and grade are fully interrelated. In fact, a
student’ s cohort is completely defined given his or her year and grade: ¢ =¢—(g —3). This
means that the parameters in [[36)]are not separately identified.**'To develop a better
understanding of what exactly can be estimated, let’ s consider alinear model defined in terms of
the regressors year (1-1994), grade (g-3), and cohort (c-1989):

InN,, = pu+a(t-1994) +B(g —3) +d(c -1989) +v,, (37)

where yis anintercept and a, £, and dhave been redefined as slope parameters rather than as
fixed effects.~~To obtain an estimable model, it is necessary to eliminate one of the variables
from the model. We eliminate g by substituting in the identity g =¢ —c¢ +3, which yields:

INN,, =(u+5B) +(a +B)(t -1994) +(3 -B)(c -1989) +v,,. (38)

This specification indicates that the regression parameter on time ¢ captures the combined effects
of year and grade (a-£). The regression parameter on cohort ¢ captures the cohort effect minus
the grade effect (&-5). Estimates of thismodel (for different demographic groups) are discussed
below.

A More General Model

The above linear model is useful in that it summarizes patterns over time and across
cohorts with alimited number of parameters. In this section, in order to follow alinear trend, we
consider a more general model that does not restrict changes over time, grades, and cohorts.
Although we do not present estimates from the general model in this study, we describe it below
since it poses some interesting analytic problems and may be useful in subsequent research.
Readersinterested in our empirical results may skip this section.

To obtain an estimable version of the general model (see equation [36)), we again need to
eliminate a single variable from the model. Before we do this, however, it is helpful to rewrite
[36)]in the following (equivalent) form:

INN = p1+aqgTog +QoeTos +0 o7 Tg, 0 o5Tog 0 goToe € T30
+B,G, + B.G, + BG, + 3G, + RG, (39)
+0,Cop + 05 Coy +... + 9 Copy +v

% These parameters cannot be estimated given data on the number of students tested. They could be estimated given
data on enrollments and the fraction of students tested.

2 The regressors are expressed as the deviation from the base period (year = 1994, grade = 3, and cohort = 1989) so
that the intercept can be interpreted as the predicted log of the number of students tested in the base period.
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where the 7, G,, and C, areindi c:gﬁr variables and the subscripts gr have been dropped from
the model to simplify the notation.“~To obtain an estimable model, we eliminate G, by
substituting the following identity:

G4 = 5 +1Y295 +2Y96 +3Y;97 +4Y98 +5Y99 +6YOO

40
-2G, —3G, —4G, -5G, -1C,, —2C,, —3C,y, +.. 10Cy, 11C,,. (40)
Thisyields the following model:
INN =(u+58,) +(ag +L,)Tss +(0gs +2/8,) 156
A +3B,) 17 +(Aog +48,) e +(@sg +58,) o HOoo 1684)Tog (1)

+(,85 _2/84)G5 +(:86 _3184)G6 +(/87 _4:84)G7 +(/@ _5:84)G8
+(590 _:84)C90 +(d.)1 _2:84)C91 +.. +( ég -10 ﬁ)cgg +( éo -11 lg) Coo .

This somewhat complicated looking equation is, in fact, very similar to the linear model
considered above in that the year and cohort parameters are defined relative to a grade-level
parameter. In the linear model, we add and subtract £(r —1994) and o(c —1989), respectively
(where the slope parameter Sis assumed to be the same at al grade levels). In the more generd
model, we add and subtract S, (1 —1994) and £,(c —1989), respectively. The year and cohort
parameters are measured relative to the grade parameter in grade 4. In the more general model,
the included grade parameters are also measured relative to .

The general model can aso be written in away that more directly highlightsitslink with
the linear mode!:

INN = (1 +58,) +(g +,)(t -1994) {3y, —3,) (c ~1989)
g =~ 2065)To6 (@07~ o5)T57 +0 05 —41 o5)Tgg
H(Age =0 g5)Tog +(@ 00~ 45) T (42)
H(Bs —2B,)Gs +(5 —3B,)Gs +(B, -4 B8)G, H B S5L)Gs
+(0y =205)Cy +( @, —34)Cy, +... H( @y =10 ) Cyg +(Fgp —119) C +.

Thefirst line of this equation is amost identical to the linear model. In however, the slope
coefficients are equal to effect (slope) parameters for the base periods (year = 1995, grade = 3,
and cohort = 1989). All of the remaining parameters capture the extent to which the number of
students tested at time ¢, grade g, and cohort ¢ departs from the slope trajectories (with respect to
time, grade, and cohort) in the base year. Model specifications[41)|and [(42)|are fully eqlg'gjal ent
ways of capturing the effects of year, grade, and cohort on the number of students tested.

% The parameters ay., 3;, and &, have implicitly been absorbed into the intercept. The parameters in the model
should be understood to capture the effect of a given year, grade, or cohort relative to the omitted group: year =
1994, grade = 3, and cohort = 1989.

2 |n fact, given estimates of either model, the parameters of the other model can be derived directly.
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Table 8.8 reports estimates of equation [[38)]for White, Hispanic, and Black students and
disadvantaged and nondisadvantaged students. Recall that the coefficient on the time variable
captures the combined effects of time and grade (a + £) (for a given cohort) and the coefficient
on the cohort variable captures the cohort effect minus the grade effect (- £3). For convenience,
the table also reports the sum of these two coefficients (a + J). This coefficient captures the
effects of time and cohort changes on the number of studentstested in agiven grade. As
indicated in the table, the linear models explain more than 75% of the variation (as measured by
the R? statistic) in the number of students tested for Hispanic students and for disadvantaged and
nondisadvantaged students. In contrast, the explanatory power of the model for Blacksis only
27%, but this doesn’t really matter because there is almost no variation to explain—see Figure
8.9).

Table 8.8

Estimates of the Determinants of the Number of Students Tested by Racial/Ethnic Group and
Disadvantaged Status

(Standard errors in parentheses.)

Parameter Variable White Hispanic Black
u+56 Intercept 11.733 11.237 10.341
(0.010) (0.017) (0.012)
o+p (t-1994) 0.007 0.075 0.010
(0.003) (0.005) (0.004)
o-p (c-1989) -0.010 -0.038 -0.001
(0.002) (0.004) (0.003)
o+o Derived -0.003 0.037 0.009
R? 0.324 0.831 0.270
Sample Size 42 42 42
Non
Parameter Variable Disadvantaged Disadvantaged
u+5f Intercept 11.777 11.115
(0.013) (0.024)
atp (t-1994) 0.022 0.048
(0.004) (0.008)
o-f (c-1989) -0.033 0.010
(0.003) (0.006)
o+o Derived -0.011 0.059
R? 0.762 0.773
Sample Size 42 42

158



The combined time and grade effects are large for two groups. Hispanic students and
disadvantaged students. With respect to Hispanic students, the estimates indicate that for a given
cohort, the number of students tested increased by 7.5% per year, or by 45% over afive-year
period. The comparable estimates for disadvantaged students are 4.8% per year and 27% over a
five-year period. These effects are quite large. They indicate that Texas may have had policies
and practicesin place from 1994 to 2000 that led to systematic undertesting of Hispanic and
disadvantaged studentsin earlier as opposed to later grades and nearer the beginning as opposed
to the end of the period. Some part of the increase in the number of students tested could be due
to positive net in-migration of students over this period, but we doubt that this could account for
all of theincrease. One of the implications of the above findings is that it would be highly
problematic to limit models of achievement growth to students with multiple (longitudinal) data
points over time. A restriction of thistype would systematically exclude Hispanic and
disadvantaged students, since these students were disproportionately likely to be excluded from
testing in the early grades and years. The models used in this study require that a student have no
more than two consecutive test scores.

The coefficient in the fourth row of Table 8.8 (a + J) captures the effects of time and
cohort changes on the number of students tested in agiven grade. (See also Tables 8.1t0 8.6.)
Asindicated in Table 8.8, this coefficient is large for disadvantaged students (5.9%) and
Hispanic students (3.7%) and very small for all other groups. Thisindicates that it could be quite
misleading to compare average test scores (with respect to any scale, TLI or other) over time at
given grade levels. Our analysis indicates that the demographic composition of these samples
changed dramatically from 1994 to 2000. As aresult, the models of achievement growth used in
this study explicitly account for differences in achievement growth associated with demographic
factors.

We next report estimates of the determinants of achievement growth in Texas over the
period 1994-2000.

Estimates of Micro Models of Student Achievement Growth

In this section, we present estimates of micro (level-one) models of student achievement.
Macro-model estimates, including estimates of the effectiveness of the Urban Systemic
Initiative, are presented in the next section. Table 8.9 presents micro-model results for several
different models. Separate results are reported by:

» Grades: 4-8.
» Test scorescale: Texas Learning Index (TLI) and Rasch scale.
» Estimation method:
0 OLS: Ordinary least squares.
o EV1: Errors and variables method based on exact finite sample estimates of the
error variance.
o EV2: Errors and variables method based on maximum-likelihood (asymptotic)
estimates of the error variance.
o IV: Instrumental variables method with twice-lagged achievement (and the other
exogenous variables) used as instrumental variables.
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o [IV-H: Instrumental variables (as above) with weighting to control for
heteroscedasticity in the variance of measurement error.

Table 8.9
The Effects of Prior Achievement and Demographic Characteristics by Grade, Scale Score, and
Model

4th Grade
TLI Rasch Scale
IV-H
Variable oLS EV1 oLS EV1 EV2 v Model
3rd Grade Achievement 0.603 0.698 0.630 0.801 0.868 na na
(0.0006) (0.0007) (0.0007) (0.0009) (0.0010)
Female -0.077 -0.085 -0.046 -0.102 -0.124 na na
(0.0146) (0.0148) (0.0205) (0.0210) (0.0214)
Disadvantaged -1.926 -1.404 -2.991 -1.844 -1.396 na na
(0.0211) (0.0214) (0.0296) (0.0306) (0.0313)
Black -2.172 -1.479 -3.449 -2.011 -1.449 na na
(0.0279) (0.0283) (0.0391) (0.0403) (0.0413)
Hispanic -0.313 0.023 -0.882 -0.104 0.200 na na
(0.0242) (0.0244) (0.0338) (0.0347) (0.0355)
Other Ethnicity 1.496 1.263 3.228 2.577 2.323 na na
(0.0623) (0.0629) (0.0872) (0.0893) (0.0912)
Mixed Report -0.590 -0.314 -1.193 -0.572 -0.329 na na
(0.0640) (0.0647) (0.0897) (0.0918) (0.0938)
5th Grade
TLI Rasch Scale
IV-H
Variable oLS EV1i oLS EV1 EV2 v Model
4th Grade Achievement  0.680 0.756 0.702 0.847 0.916 0.986 0.987
(0.0006) (0.0006) (0.0007) (0.0008) (0.0009) (0.0014) (0.0013)
Female -0.324 -0.317 -0.334 -0.344 -0.348 -0.418 -0.426
(0.0130) (0.0131) (0.0192) (0.0195) (0.0199) (0.0240) (0.0237)
Disadvantaged -1.256 -0.840 -2.225 -1.207 -0.730 -0.169 -0.150
(0.0190) (0.0192) (0.0280) (0.0287) (0.0294) (0.0359) (0.0352)
Black -1.821 -1.289 -2.842 -1.593 -1.007 -0.165 -0.169
(0.0248) (0.0251) (0.0365) (0.0374) (0.0383) (0.0468) (0.0457)
Hispanic -0.377 -0.156 -0.913 -0.333 -0.061 0.338 0.346
(0.0213) (0.0214) (0.0313) (0.0320) (0.0326) (0.0397) (0.0389)
Other Ethnicity 1.021 0.804 2.572 1.853 1.515 1.141 1.132
(0.0522) (0.0526) (0.0768) (0.0783) (0.0799) (0.0992) (0.1007)
Mixed Report -0.590 -0.390 -1.109 -0.598 -0.359 0.045 0.059
(0.0551) (0.0555) (0.0810) (0.0825) (0.0842) (0.0997) (0.0984)
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Table 8.9 (continued)

The Effects of Prior Achievement and Demographic Characteristics by Grade, Scale Score, and

Model

Variable
5th Grade Achievement

Female
Disadvantaged
Black

Hispanic

Other Ethnicity

Mixed Report

Variable
6th Grade Achievement

Female
Disadvantaged
Black

Hispanic

Other Ethnicity

Mixed Report

6th Grade
TLI Rasch Scale

IV-H

oLS EV1 oLS EV1 EV2 \Y Model
0.679 0.753 0.699 0.838 0.891 0.935 0.934
(0.0005) (0.0006) (0.0006) (0.0007) (0.0008) (0.0011) (0.0010)
-0.598 -0.573 -0.617 -0.596 -0.588 -0.698 -0.738
(0.0119) (0.0120) (0.0173) (0.0176) (0.0179) (0.0216) (0.0212)
-1.430 -1.027 -2.398 -1.405 -1.023 -0.721 -0.703
(0.0174) (0.0176) (0.0254) (0.0261) (0.0266) (0.0324) (0.0315)
-1.382 -0.851 -2.388 -1.153 -0.678 -0.028 -0.014
(0.0226) (0.0229) (0.0329) (0.0338) (0.0345) (0.0420) (0.0403)
-0.684 -0.460 -1.342 -0.748 -0.519 -0.186 -0.171
(0.0192) (0.0194) (0.0280) (0.0286) (0.0292) (0.0355) (0.0343)
1.077 0.861 2.331 1.577 1.287 1.044 1.070
(0.0459) (0.0463) (0.0668) (0.0682) (0.0695) (0.0847) (0.0891)
-0.650 -0.442 -1.197 -0.670 -0.467 -0.217 -0.199
(0.0498) (0.0502) (0.0723) (0.0738) (0.0752) (0.0881) (0.0878)

7th Grade
TLI Rasch Scale

IvV-H

oLS EV1 oLS EV1 EV2 [\ Model

0.781 0.859 0.800 0.946 0.991 1.046 1.036
(0.0005) (0.0006) (0.0006) (0.0007) (0.0008) (0.0011) (0.0010)
-0.249 -0.183 -0.335 -0.241 -0.212 -0.379 -0.335
(0.0120) (0.0121) (0.0171) (0.0175) (0.0177) (0.0216) (0.0207)
-1.590 -1.158 -2.434 -1.374 -1.043 -0.679 -0.657
(0.0177) (0.0179) (0.0252) (0.0259) (0.0263) (0.0325) (0.0305)
-1.596 -1.065 -2.344 -1.091 -0.701 0.048 0.014
(0.0229) (0.0232) (0.0327) (0.0335) (0.0341) (0.0419) (0.0388)

-0.713 -0.406 -1.211 -0.427 -0.182 0.312 0.281
(0.0194) (0.0196) (0.0277) (0.0283) (0.0288) (0.0353) (0.0331)

1.220 0.988 2.961 2.184 1.942 1.805 1.717
(0.0453) (0.0457) (0.0646) (0.0660) (0.0670) (0.0829) (0.0881)

-0.627 -0.399 -0.967 -0.375 -0.191 0.240 0.216
(0.0518) (0.0523) (0.0738) (0.0754) (0.0765) (0.0891) (0.0882)
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Table 8.9 (continued)
The Effects of Prior Achievement and Demographic Characteristics by Grade, Scale Score, and
Model

8th Grade
TLI Rasch Scale

IV-H

Variable OoLS EV1 OLS EV1 EV2 \Y} Model
7th Grade Achievement  0.753 0.827 0.741 0.862 0.880 0.923 0.928
(0.0005) (0.0006) (0.0005) (0.0006) (0.0007) (0.0009) (0.0009)

Female 0.287 0.345 0.428 0.502 0.514 0.352 0.394
(0.0121) (0.0121) | (0.0159) (0.0162) (0.0163) (0.0194) (0.0189)

Disadvantaged -0.979 -0.548 -1.505 -0.597 -0.459 -0.075 -0.061
(0.0176) (0.0178) | (0.0233) (0.0238) (0.0240) (0.0292) (0.0278)

Black -1.203 -0.632 -1.878 -0.721 -0.545 0.145 0.157
(0.0230) (0.0233) (0.0304) (0.0311) (0.0313) (0.0378) (0.0356)

Hispanic -0.778 -0.436 -1.236 -0.491 -0.377 0.125 0.105
(0.0195) (0.0197) (0.0257) (0.0263) (0.0265) (0.0318) (0.0304)

Other Ethnicity 0.986 0.747 2.343 1.613 1.502 1.190 1.214
(0.0448) (0.0451) | (0.0592) (0.0603) (0.0607) (0.0726) (0.0788)

Mixed Report -0.646 -0.393 -1.029 -0.470 -0.385 -0.035 -0.057
(0.0556) (0.0560) | (0.0734) (0.0748) (0.0752) (0.0853) (0.0866)

The estimates are based on separate models at each grade level, with data pooled (at each grade
level) across all years: 1995 to 2000.““However, separate district school effects are included for
every year. (Tables 8.10 to 8.14 report micro model estimates based on separate models by grade
and year.) The pooled estimates are based on samples of approximately 1.2 million observations.
Since the parameter estimates are al made with great precision (small standard errors), we will
not discuss whether the estimates are statistically significant. They are. Nonethel ess, estimates of
standard errors are reported in parentheses.

Let’s begin by discussing the estimates of the Rasch model in 5™ grade (second panel in
Table 8.9). In particular, focus on the coefficients on prior achievement and economic
disadvantage for the alternative-estimation methods, reported below for convenience.

Method of Pretest Economic

Estimation Disadvantage
OLS 0.702 -2.225
EV1 0.847 -1.207
EV2 0.916 -0.730
A% 0.986 -0.169
IV-H 0.987 -0.150

2 Since the value-added models used in this study all require pretest data, models cannot be estimated for the first
year (1994) and for the earliest grade (3" grade). In addition, the IV and IV-H models require data on twice-lagged
achievement. These models cannot be estimated for 3" and 4™ grades and for the years 1994 and 1995.
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Table 8.10

The Effects of Prior Achievement and Demographic Characteristics in 4" Grade by Year and

Scale Score

Variable

3rd Grade Achievement
Female

Disadvantaged

Black

Hispanic

Other Ethnicity

Mixed Report

Variable

3rd Grade Achievement
Female

Disadvantaged

Black

Hispanic

Other Ethnicity

Mixed Report

Sample

Variable

3rd Grade Achievement
Female

Disadvantaged

Black

Hispanic

Other Ethnicity

Mixed Report

Variable

3rd Grade Achievement
Female

Disadvantaged

Black

Hispanic

Other Ethnicity

Mixed Report

Sample

Pooled
0.70
-0.09
-1.40
-1.48
0.02
1.26
-0.31

Pooled
0.80
-0.10
-1.84
-2.01
-0.10
2.58
-0.57

1191841

Pooled
0.60
-0.08
-1.93
-2.17
-0.31
1.50
-0.59

Pooled
0.63
-0.05
-2.99
-3.45
-0.88
3.23
-1.19

1191841

EV1 Model
Texas Learning Index
1995 1996 1997
0.74 0.70 0.67
0.05 0.44 0.13
-1.90 -1.87 -1.66
-1.92 -1.87 -1.74
-0.26 -0.22 -0.10
151 1.54 1.16
-0.54 -0.44 -0.19
Rasch Scale
1995 1996 1997
0.85 0.82 0.74
0.15 0.56 0.34
-2.06 -2.22 -2.07
-2.27 -2.18 -2.27
-0.50 -0.42 -0.27
2.13 2.96 2.48
-0.72 -0.77 -0.55
195851 195602 196328
OLS Model
Texas Learning Index
1995 1996 1997
0.63 0.61 0.60
0.04 0.40 0.11
-2.61 -2.48 -2.08
-2.90 -2.59 -2.20
-0.77 -0.59 -0.35
1.78 1.77 1.34
-0.99 -0.71 -0.34
Rasch Scale
1995 1996 1997
0.68 0.66 0.60
0.15 0.52 0.33
-3.19 -3.43 -3.11
-3.75 -3.54 -3.38
-1.35 -1.21 -0.91
2.70 3.59 3.03
-1.44 -1.36 -0.95
195851 195602 196328
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1998
0.69
-0.24
-1.33
-1.17
0.09
1.30
-0.11

1998

0.77
-0.25
-1.85
-1.83
-0.12

2.65
-0.34

202298

1998

0.61
-0.25
-1.76
-1.67
-0.15

1.50
-0.32

1998

0.61
-0.26
-2.99
-3.07
-0.80

3.33
-0.90

202298

1999
0.65
-0.51
-1.04
-1.52
0.34
1.28
-0.30

1999
0.78
-0.82
-1.53
-2.13
0.41
3.11
-0.30

200186

1999
0.54
-0.46
-1.52
-2.18
0.03
151
-0.59

1999

0.59
-0.66
-2.68
-3.64
-0.40

3.76
-1.01

200186

2000
0.73
-0.36
-0.85
-0.43
0.37
0.83
-0.28

2000
0.87
-0.64
-1.44
-0.96
0.45
2.16
-0.69

201576

2000
0.60
-0.23
-1.39
-1.42
0.01
111
-0.68

2000

0.64
-0.30
-2.68
-3.08
-0.51

2.98
-1.56

201576



Table8.11

The Effects of Prior Achievement and Demographic Characteristics in 5" Grade by Year and

Scale Score

Variable

4th Grade Achievement
Female

Disadvantaged

Black

Hispanic

Other Ethnicity

Mixed Report

Variable

4th Grade Achievement
Female

Disadvantaged

Black

Hispanic

Other Ethnicity

Mixed Report

Sample

Variable

4th Grade Achievement
Female

Disadvantaged

Black

Hispanic

Other Ethnicity

Mixed Report

Variable

4th Grade Achievement
Female

Disadvantaged

Black

Hispanic

Other Ethnicity

Mixed Report

Sample

Pooled

0.76
-0.32
-0.84
-1.29
-0.16

0.80
-0.39

Pooled

0.85
-0.34
-1.21
-1.59
-0.33

1.85
-0.60

1235502

Pooled

0.68
-0.32
-1.26
-1.82
-0.38

1.02
-0.59

Pooled

0.70
-0.33
-2.22
-2.84
-0.91

2.57
-1.11

1235502

EV1 Model

Texas Learning Index

1995 1996 1997
0.79 0.79 0.73
-0.14 -0.08 -0.53
-1.43 -0.84 -0.95
-1.96 -1.81 -1.20
-0.68 -0.33 -0.08
0.83 0.95 0.88
-0.82 -0.54 -0.30
Rasch Scale
1995 1996 1997
0.87 0.85 0.81
0.00 0.02 -0.56
-1.65 -1.06 -1.29
-2.04 -1.76 -1.59
-0.93 -0.44 -0.39
1.59 1.95 1.60
-0.97 -0.75 -0.59
196677 203434 204943
OLS Model

Texas Learning Index

1995 1996 1997
0.71 0.72 0.66
-0.19 -0.08 -0.52
-1.96 -1.35 -1.37
-2.68 -2.47 -1.66
-1.02 -0.62 -0.29
1.16 1.18 1.07
-1.11 -0.82 -0.47
Rasch Scale
1995 1996 1997
0.74 0.72 0.68
-0.08 0.05 -0.52
-2.52 -2.02 -2.29
-3.20 -2.99 -2.67
-1.52 -1.05 -0.92
2.30 2.52 2.26
-1.45 -1.31 -1.04
196677 203434 204943
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1998
0.74
-0.85
-0.73
-0.65
0.18
1.25
-0.05

1998
0.85
-1.27
-1.00
-0.89
0.17
2.57
-0.04

211026

1998
0.67
-0.85
-1.10
-1.05
0.01
141
-0.16

1998

0.70
-1.22
-2.11
-2.09
-0.38

3.25
-0.44

211026

1999
0.72
0.16

-0.78

-1.62

-0.04
0.49

-0.30

1999
0.86
0.49

-1.35

-2.35

-0.46
1.70

-0.55

209899

1999
0.63
0.15

-1.16

-2.10

-0.23
0.71

-0.50

1999
0.70
0.49

-2.44

-3.66

-1.04
2.50

-1.11

209899

2000
0.72
-0.42
-0.52
-0.57
0.05
0.58
-0.36

2000
0.86
-0.70
-0.94
-0.87
0.05
1.62
-0.86

209523

2000

0.63
-0.42
-0.84
-1.04
-0.10

0.78
-0.54

2000

0.68
-0.69
-2.00
-2.35
-0.52

2.56
-1.43

209523



Table 8.12

The Effects of Prior Achievement and Demographic Characteristics in 8" Grade by Year and

Scale Score

Variable Pooled
5th Grade Achievement 0.75
Female -0.57
Disadvantaged -1.03
Black -0.85
Hispanic -0.46
Other Ethnicity 0.86
Mixed Report -0.44
Variable Pooled
5th Grade Achievement 0.84
Female -0.60
Disadvantaged -1.41
Black -1.15
Hispanic -0.75
Other Ethnicity 1.58
Mixed Report -0.67
Sample 1271374
Variable Pooled
5th Grade Achievement 0.68
Female -0.60
Disadvantaged -1.43
Black -1.38
Hispanic -0.68
Other Ethnicity 1.08
Mixed Report -0.65
Variable Pooled
5th Grade Achievement 0.70
Female -0.62
Disadvantaged -2.40
Black -2.39
Hispanic -1.34
Other Ethnicity 2.33
Mixed Report -1.20
Sample 1271374

EV1 Model

Texas Learning Index

1995 1996 1997
0.77 0.70 0.77
-0.04 -0.94 -0.76
-1.26 -1.08 -1.08
-1.93 -0.84 -0.22
-1.43 -0.77 0.07
0.69 0.93 1.11
-1.00 -0.60 -0.10
Rasch Scale
1995 1996 1997
0.88 0.80 0.85
0.13 -1.02 -0.92
-1.32 -1.38 -1.55
-1.87 -1.04 -0.51
-1.63 -1.03 -0.13
1.01 1.63 2.04
-1.10 -0.74 -0.25
200428 202551 212387
OLS Model

Texas Learning Index

1995 1996 1997
0.69 0.63 0.70
-0.07 -0.98 -0.77
-1.79 -1.54 -1.52
-2.65 -1.46 -0.81
-1.80 -1.05 -0.17
1.01 1.19 1.34
-1.35 -0.87 -0.33
Rasch Scale
1995 1996 1997
0.75 0.68 0.73
0.11 -1.07 -0.91
-2.20 -2.32 -2.53
-3.03 -2.25 -1.78
-2.28 -1.64 -0.73
1.69 2.36 2.75
-1.71 -1.28 -0.81
200428 202551 212387
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1998

0.76
-0.76
-0.82
-0.46
-0.06

1.13
-0.15

1998

0.82
-0.94
-1.11
-0.51
-0.01

2.19
-0.22

217953

1998

0.69
-0.79
-1.19
-0.87
-0.23

1.32
-0.29

1998

0.69
-0.98
-2.13
-1.62
-0.54

2.90
-0.69

217953

1999

0.76
-0.12
-1.00
-1.32
-0.52

0.52
-0.57

1999
0.87
0.58

-1.72

-2.30

-1.49
0.92

-1.12

218170

1999

0.68
-0.16
-1.34
-1.72
-0.67

0.73
-0.68

1999
0.71
0.46

-2.79

-3.53

-2.01
1.83

-1.54

218170

2000

0.77
-0.83
-0.95
-0.34
-0.13

0.85
-0.37

2000

0.81
-1.35
-1.36
-0.61
-0.23

1.66
-0.70

219885

2000

0.69
-0.81
-1.26
-0.80
-0.30

1.01
-0.54

2000

0.66
-1.27
-2.39
-1.99
-0.86

2.45
-1.25

219885



Table8.13
The Effects of Prior Achievement and Demographic Characteristics in 7" Grade by Year and
Scale Score

EV1 Model
Texas Learning Index
Variable Pooled 1995 1996 1997 1998 1999 2000
6th Grade Achievement 0.86 0.95 0.99 0.89 0.89 1.08 0.90
Female -0.18 0.75 -0.50 0.34 0.09 -0.26 -1.72
Disadvantaged -1.16 -1.49 -1.01 -1.08 -1.29 -1.79 -1.59
Black -1.07 -2.32 -0.95 -0.84 -1.62 -0.81 -0.02
Hispanic -0.41 -1.77 -0.27 -0.06 -0.95 -0.42 0.88
Other Ethnicity 0.99 1.30 1.25 2.14 1.00 2.63 4.27
Mixed Report -0.40 -1.10 -0.59 -0.27 -0.49 -0.15 0.22

Rasch Scale

Variable Pooled 1995 1996 1997 1998 1999 2000
6th Grade Achievement 0.95 0.85 0.88 0.86 0.84 0.92 0.80
Female -0.24 0.61 -0.52 0.24 -0.03 -0.46 -0.84
Disadvantaged -1.37 -1.68 -0.92 -1.00 -1.10 -1.21 -1.10
Black -1.09 -2.57 -0.90 -0.85 -1.40 -0.46 -0.33
Hispanic -0.43 -1.79 -0.21 -0.09 -0.68 -0.08 0.30
Other Ethnicity 2.18 0.92 0.87 1.28 0.38 0.95 1.60
Mixed Report -0.38 -1.39 -0.53 -0.26 -0.46 -0.07 0.02
Sample 1312269 203956 207982 213514 228390 228349 230078
OLS Model
Texas Learning Index
Variable Pooled 1995 1996 1997 1998 1999 2000
6th Grade Achievement 0.78 0.77 0.80 0.78 0.77 0.83 0.72
Female -0.25 0.50 -0.55 0.13 -0.08 -0.53 -0.87
Disadvantaged -1.59 -2.16 -1.43 -1.47 -1.50 -1.65 -1.44
Black -1.60 -3.28 -1.58 -1.38 -1.84 -0.91 -0.74
Hispanic -0.71 -2.20 -0.63 -0.40 -0.91 -0.34 0.07
Other Ethnicity 1.22 1.24 1.13 1.52 0.59 1.20 1.77
Mixed Report -0.63 -1.73 -0.87 -0.49 -0.65 -0.26 -0.11

Rasch Scale

Variable Pooled 1995 1996 1997 1998 1999 2000
6th Grade Achievement 0.80 0.82 0.86 0.76 0.75 0.88 0.75
Female -0.33 0.61 -0.50 0.15 -0.01 -0.42 -1.70
Disadvantaged -2.43 -2.32 -1.89 -2.11 -2.37 -3.15 -2.75
Black -2.34 -3.53 -2.10 -1.98 -2.76 -2.19 -1.40
Hispanic -1.21 -2.52 -1.05 -0.79 -1.62 -1.26 0.01
Other Ethnicity 2.96 2.01 1.86 2.87 1.78 3.72 5.01
Mixed Report -0.97 -1.72 -1.23 -0.81 -1.04 -0.80 -0.32
Sample 1312269 203956 207982 213514 228390 228349 230078
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Table 8.14
The Effects of Prior Achievement and Demographic Characteristics in 8" Grade by Year and
Scale Score

EV1 Model

Texas Learning Index
Variable Pooled 1995 1996 1997 1998 1999 2000
7th Grade Achievement 0.83 0.84 0.87 0.87 0.84 0.79 0.61
Female 0.35 1.33 0.05 0.49 -0.09 -0.37 0.64
Disadvantaged -0.55 -1.16 -0.22 -0.39 -0.47 -0.53 -1.08
Black -0.63 -2.34 -0.44 -0.10 0.01 0.05 -1.41
Hispanic -0.44 -2.04 -0.02 0.00 -0.34 0.00 -0.56
Other Ethnicity 0.75 0.63 0.87 1.32 0.71 0.86 0.71
Mixed Report -0.39 -1.40 -0.21 -0.15 -0.23 -0.13 -0.58

Rasch Scale

Variable Pooled 1995 1996 1997 1998 1999 2000
7th Grade Achievement 0.86 0.88 0.89 0.90 0.92 0.87 0.76
Female 0.50 1.56 -0.11 0.47 0.37 -0.40 1.19
Disadvantaged -0.60 -0.85 -0.16 -0.38 -0.42 -0.65 -0.96
Black -0.72 -1.97 -0.45 0.04 0.06 -0.12 -1.47
Hispanic -0.49 -1.78 0.00 0.14 -0.42 -0.09 -0.59
Other Ethnicity 1.61 0.89 1.92 2.64 1.87 1.57 1.04
Mixed Report -0.47 -1.18 -0.27 -0.09 -0.29 -0.27 -0.61
Sample 1300942 198652 206547 213692 222799 228496 230756

OLS Model

Texas Learning Index
Variable Pooled 1995 1996 1997 1998 1999 2000
7th Grade Achievement 0.75 0.76 0.79 0.80 0.77 0.72 0.61
Female 0.29 1.23 0.01 0.43 -0.16 -0.39 0.64
Disadvantaged -0.98 -1.65 -0.73 -0.85 -0.90 -0.90 -1.08
Black -1.20 -3.09 -1.23 -0.70 -0.49 -0.43 -1.41
Hispanic -0.78 -2.52 -0.51 -0.37 -0.63 -0.27 -0.56
Other Ethnicity 0.99 0.94 1.18 1.55 0.96 1.02 0.71
Mixed Report -0.65 -1.78 -0.58 -0.46 -0.44 -0.34 -0.58

Rasch Scale
Variable Pooled 1995 1996 1997 1998 1999 2000
7th Grade Achievement 0.74 0.76 0.79 0.79 0.79 0.74 0.64
Female 0.43 1.44 -0.13 0.41 0.25 -0.44 1.09
Disadvantaged -1.51 -1.59 -0.94 -1.27 -1.43 -1.64 -1.99
Black -1.88 -3.12 -1.62 -1.09 -1.09 -1.33 -2.52
Hispanic -1.24 -2.55 -0.79 -0.62 -1.13 -0.83 -1.24
Other Ethnicity 2.34 1.56 2.55 3.24 2.70 2.24 1.98
Mixed Report -1.03 -1.78 -0.83 -0.73 -0.81 -0.85 -1.08
Sample 1300942 198652 206547 213692 222799 228496 230756
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The pretest coefficients vary enormously across the five different estimation methods, ranging
from alow estimate of 0.702 for the OLS model up to 0.987 for the IV-H model. Similarly, the
estimated effect of economic disadvantage ranges from a high (negative) estimate of -2.225 in
the OLS model to alow of -0.150 (essentially no effect) in the IV-H model. It is evident that the
choice of estimation method makes a huge difference. Which estimates should we prefer? The
choice of estimation method is complicated by two factors. First, student achievement (whether
measured by the Texas Learning Index or the Rasch scale) is measured with error. Second, the
Texas dataset (like most datasets based on administrative records) includes only alimited
number of control variables.

The first factor, if not addressed, causes downward bias in the coefficient on prior
achievement and bias in the other parameter estimates. Fortunately, the biases due to
measurement error can be eliminated using the errors-in-variables methoE{I(EV), provided that
(correct) information on the magnitude of the error variance is available.~Earlier in the paper,
we demonstrated that the finite-sample approach, in contrast to the traditional asymptotic
(maximum likelihood) method, yields correct estimates of the measurement error variance. Asa
result, the approach that corrects for measurement error using finite-sample measures of the error
variance (EV1) should be preferred over the aternative approach (EV2). The latter approach
over-corrects for measurement error and, as indicated above (and in Table 8.9), produces high
estimates of the pretest coefficient and low estimates of the coefficient on economic
disadvantage.

The second factor givesrise to two different problems. One, failure to control for
persistent individual/family attributes that affect achievement growth islikely to produce upward
bias in the coefficient on prior achievement (since the omitted individual effects are likely to be
positively correlated with prior achievement). As aresult, EV 1 estimates of the coefficient on
prior achievement should be viewed as upper-bound estimates of the coefficient on prior
achievement. It is tempting to specul ate that the biases caused by measurement error (negative
bias) and (unmeasured) persistent individual effects (positive bias) cancel each other out. In this
case, OL S estimates of the coefficient on prior achievement would be unbiased. Unfortunately,
thereis no reason to assume this. | am inclined to believe that the OLS estimates are on the low
side. If so, we can conclude that the true value of the pretest coefficient in 5™ grade lies between
0.702 (OLS) and 0.847 (EV1).

The second problem with weak control variablesis that the (unmeasured) individual
effects may be correlated with the school district indicators. In other words, the groups of
students in different districts may differ with respect to unmeasured student/family
characteristics. If so, estimation methods that yield unbiased pretest coefficients could
paradoxically yield biased estimates of school district effects (and the effects of educational
inputs and policies). One possible approach to reducing (or eliminating) this source of biasisto
allow the pretest variable to serve, in effect, as a proxy for omitted individual effects. This
suggests (as argued earlier in the paper) that the EV 1 method might produce the best estimates of
school effects (even though it would produce upward-biased estimates of the effects of prior

% The EV method yields parameter estimates that are consistent (asymptotically unbiased). Given the large size of
the Texas data set, it is reasonable to assume that the EV estimates fully correct for the biases due to measurement
error.
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achievement). The bottom line is that the EV 1 estimates are probably most useful if the objective
of the analysisisto obtain valid (consistent) estimates of school district effects (and the effects of
educational inputs and policies). Nonetheless, given the uncertainty that arises from having a
weak set of control variables, we report district-level (level-two) results in the next section based
on level-one estimates from both the OLS and EV 1 approaches.

Finally, it isinteresting to note that both models based on instrumental variables (1V and
IV-H) produce estimates of pretest coefficients that exceed the upper-bound estimates given by
the EV 1 approach. Thisis evidently due to the fact that twice-lagged achievement is highly
correlated with the omitted individual effect (and possibly a serially correlated error component)
and thusis not avalid instrumental variable. The interesting point about these results is that they
indicate at face value that there is essentially no effect on student achievement growth of being
economically disadvantaged. Thisresult isatechnical artifact of using amodel that produces a
hugely upward-biased pretest coefficient (approximately equal to 1.0). The same result would be
obtained from alinear growth model (amodel that imposes the assumption that the pretest
coefficient isequal to 1). At all grade levels, our analysis indicates that the upper-bound estimate
(from the EV1 model) of the pretest coefficient is substantialy less than 1 (about 0.85). Hence,
one important methodological finding of this study isthat linear growth models (quite widely
used) would be inappropriate for the Texas achievement data.

In light of the above discussion, we will focus below on estimates obtained using the EV'1
and OLS methods. Asindicated in Table 8.9, the strongest demographic predictors of
achievement growth are economic disadvantage and Black status. Both are negatively related to
achievement growth. For example, with respect to the EV 1 estimates for the Rasch scale, the
effects of economic disadvantage and Black status are equal to -1.2 and -1.6, respectively. These
effects are somewhat larger based on the OL S estimates. The effects of gender and Hispanic
status are quite small at all grade levels.

The coefficient estimates should be interpreted as the effect of an explanatory variable on
grade-to-grade growth in mathematics achievement as measured by the TLI or Rasch scale. An
example of an explanatory variable is a demographic characteristic such as economic
disadvantage or the USI program. Thus, a coefficient estimate of one corresponds to one point on
the TLI or Rasch scale.

Next, we examine whether the effects of economic disadvantage and race/ethnicity varied
over time—see Tables 8.10 to 8.14. To facilitate comparison of these effects, coefficient
estimates based on the Rasch scale and EV 1 estimation method are presented in Figures 8.14 (the
effect of eEanomic disadvantage), 8.15 (the effect of being Black), and 8.16 (the effect of being
Hispanic).~Separate estimates are presented for each grade and the average effect (across
grades) over time (the latter in bold). The effects of economic disadvantage (relative to

% The regression model results for the Rasch and TLI scales were quite similar. Hence, we report only the results for
the Rasch scale. Thisis perhaps a surprising result given that the univariate statistics (see the means and standard
deviations reported in Tables 8.1 to 8.5) for the two scales exhibited very different patterns. This differenceis due to
the fact that the regression models control for prior achievement and thusimplicitly adjust for differencesin the
shape of the achievement growth curves produced by the Rasch and TLI scales. The TLI scale exhibits greater
curvature over time than the Rasch scale. As aresult, the posttest-on-pretest coefficients tend to be smaller in the
models based on the TLI scale than the Rasch scale.
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nondisadvantaged students) were relatively constant over timein grades 5, 6, and 7. Thisalso
was true for the average across all grades. The effect for the average hovered around —1.25 from
1996 to 2000. This indicates that grade-to-grade growth in mathematics achievement was, on the
average, 1.25 points lower for economically disadvantaged students as compared to
economically advantaged students. What is interesting are the differences in the change between
4" grade and 8" grade over time; the 4™ grade effects decreased slightly (became less negative)
and the 8" grade effects decreased from 1995 to 1996 and then gradually increased (became
more negative) over the next four years. In general, as the number of disadvantaged students
increased (Figure 8.13), the effect on achievement remained negative and constant over time,
except in the 4™ grade and 8" grade.

In contrast, the effects of Black status (relative to White status) varied somewhat by
grade and over time (see Figure 8.15 for clarification). The average effect of Black status (across
grades) improved from about —2.0 to —1.0 from 1995 to 2000. In the intervening years, the
effects differed quite a bit across grades, with arelatively large negative effect (about —2.2) in the
4™ grade from 1995 to 1999 and no effect in the 8" grade from 1997 to 1999. Overall, the
number of Black students tested in Texas remained constant (Figure 8.11). Black students
performed lower than White students in the lower grades and were on par with White studentsin
8" grade for three years.

Figure 8.14. The effect of being economically disadvantaged over time by grade, Rasch scale
(EV 1 Estimates).
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Figure 8.15. The effect of being African American over time by grade, Rasch scale (EV1
Estimates)
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Figure 8.16. The effect of being Hispanic over time by grade, Rasch scale (EV 1 Estimates).
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Although the effects of Hispanic status (relative to White status) were generally quite
small—typically, between 0.0 and —-0.5—at all grades and in all years, the 4™ grade Hispanic
students had a more positive effect when compared to students in the other gradesin 1999 and
2000. Thisis noticeably different from the disadvantaged and Black analyses. The first year
(1995) was somewhat of an exception: the effects varied from —0.5 in 4" grade to —1.8 in 8"
grade. Even though the number of Hispanic students tested increased significantly over time
(Figure 8.10), the average performance of Hispanic students from 1997 to 2000 was nearly
comparable to White students. The adjusted gain scores by 4™ grade Hispanic studentsin 1999
and 2000 actually were slightly higher than those of 4™ grade White students. Looking across the
complete set of coefficient estimates by year, it appears that the coefficients are reasonably stable
over time. Nonethel ess, there was a general rise in performance by Black and Hispanic students
after 1995. The (negative) Black effect declined by about 50% from 1995 to 2000, and the
small, but negative Hispanic effect (averaged across all grades) essentially vanished by 2000.
However, there was little improvement by economically disadvantaged students over the six
years analyzed. Because there was some stability in results over time, it is reasonable to focus on
the pooled (across years) estimates. In the next section, we draw on estimates of school district
productivity derived from the pooled data to assess the effectiveness of the Urban Systemic
Initiative (USI).

Estimates of the Effectiveness of the Urban Systemic I nitiative

Tables 8.15 to 8.18 present estimates of the effectiveness of the Urban Systemic Initiative
(USI) based on the level-two model discussed earlier in the paper. Separate US| effect estimates
are presented based on level-one estimates from the OLS and EV 1 approaches and the Rasch and
TLI scales. The USI effect estimates are reported by grade and year. Asindicated in the top
panel in each table, the standard errors associated with each effect estimate (by grade and year)
are quite large. Thisis due to the fact that the number of districts that participated in the USI was
relatively small. Asaresult, it is best to interpret the USI estimates as a set rather than focus on
estimates in any particular grade and year. The separate estimates by grade and years arein
general not statistically significant. Nonetheless, it is apparent from inspecting the four tables
that the USI appears to have contributed modestly to student achievement growth. Moreover, the
USI effect appears to be have increased over time, from essentially no effect during the initial
years of the program to modest, positive effectsin 1999 and 2000. One interesting result is that
the USI effect estimates appear to be generally larger in the early rather than later grades.

The above results—small but positive effects at the district level—indicate that it would
be interesting to investigate the effectiveness of the USI at the school (and possibly teacher)
level. It is possible that the program may have been implemented with varying degrees of
success across schools. In order to conduct such an analysis, it would be necessary to draw on
school (and possibly teacher) level datato implement athree- (or four-) level model of
achievement, where, as above, level oneisthe student level, level two is the school (or teacher
level), and level threeisthe district level. It would be straightforward to implement such a model
using the methods devel oped in this study.
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Table 8.15
Effectiveness of the Urban Systemic Initiative by Grade and Year for the TLI Scale and OLS
Model

TLI Scale, OLS Model

Grade 1995 1996 1997 1998 1999 2000

4 0565 0728  0.765  0.868  1.533  1.228
(1.327) (1.328) (0.799) (0.799) (0.799)  (0.800)

5 -0.323 -0239 0702  0.669  0.977  0.355
(1.212) (1.213) (0.730) (0.729) (0.730)  (0.730)

6 -0.874 0373 0505 0518 0810  0.720
(1.031) (1.032) (0.621) (0.621) (0.621) (0.621)

7 1871 0734 0541 0251 -0.034  0.512
(0.945) (0.947) (0.570) (0.570) (0.570) (0.571)

8 1942 1730 0037 0482 0759  1.211]
(0.954) (0.955) (0.575) (0.575) (0.575) (0.575)

Note: Standard Errors in Parentheses

TLIScale, OLS Model
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Table 8.16

Effectiveness of the Urban Systemic Initiative by Grade and Year for the Rasch Scale and OLS

Model
Rasch Scale OLS Model

Grade 1995 1996 1997 1998 1999 2000

4 0.465 0593  0.982 1020 1995  1.554
(1.679) (1.681) (1.012) (1.012) (1.012) (1.013)

5 0231 -0.164 0810 0773 1387  0.389
(1.611) (1.612) (0.971) (0.970) (0.971) (0.972)

6 1431 -0512 -0.018  0.126  0.445  0.191
(1.478) (1.480) (0.890) (0.891) (0.890)  (0.891)

7 1601 0715  0.808  0.311 -0.747  0.017
(1.331) (1.334) (0.803) (0.803) (0.803) (0.804)

8 1617  1.803 -0.252  0.051  0.280  1.004
(1.143) (1.145) (0.690) (0.690) (0.690)  (0.691)

Note: Standard Errors in Parentheses

Rasch Scale, OLS Model
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Table 8.17
Effectiveness of the Urban Systemic Initiative by Grade and Year fpr the TLI Scale and EV1

Model
TLI Scale, EV1 Model

Grade 1995 1996 1997 1998 1999 2000

4 0.318 0599  0.646 0740  1.389  0.977
(1.379) (1.380) (0.830) (0.830) (0.830) (0.831)

5 0439 -0372 0662 0585 0862  0.177
(1.256) (1.256) (0.756) (0.755) (0.756)  (0.756)

6 0960 0305 0433 0432 0678  0.542
(1.067) (1.067) (0.642) (0.642) (0.642) (0.643)

7 2018 0722 0457  0.153 -0.146  0.341
(0.978) (0.980) (0.590) (0.590) (0.590)  (0.590)

8 2053 1767 -0.046  0.378 0663  1.117
(0.979) (0.981) (0.590) (0.590) (0.590)  (0.591)

Note: Standard Errors in Parentheses

TLI Scale, EV1 Model
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Table 8.18

Effectiveness of the Urban Systemic Initiative by Grade and Year for the Rasch Scale and EV1

Model
Rasch Scale, EV1 Model

Grade 1995 1996 1997 1998 1999 2000,

4 0.059 0.375 0.880 0.934 1.881 1.212
(2.793) (1.795) (1.080) (1.080) (1.080) (1.081)

5 -0.422 -0.315 0.841 0.713 1.293 0.121
(2.708) (1.709) (1.029) (1.029) (1.029) (1.030)

6 -1.593 -0.640 -0.122 0.026 0.257 -0.114
(1.557) (1.558) (0.937) (0.938) (0.937) (0.938)

7 -1.803 0.789 0.791 0.285 -0.792 -0.124
(1.418) (1.422) (0.855) (0.855) (0.855) (0.856)

8 -1.810 1.896 -0.305 -0.027 0.266 1.079
(1.202) (1.204) (0.725) (0.725) (0.725) (0.726)

Note: Standard Errors in Parentheses
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Conclusions

This study has developed a powerful tool set for analyzing the determinants of student
achievement, particularly with respect to large data sets. These methods could be practically
applied to analyze the state data sets that will hopefully be assembled as part of the new federal
testing requirements.

This study directs attention to the fact that policy conclusions may be sensitive to the way
in which test scores are scaled. We found that the TLI and Rasch scales frequently yielded quite
different results. In subsequent research, we hope to devel op statistical tests that will allow
researchers to choose between alternative scales. A preferred scaleis one that (in conjunction
with a properly specified model) yields effect estimates that can be interpreted causally.

We demonstrated that it isimportant to employ statistical methods that correctly adjust
for measurement error in achievement. Interestingly, we showed that the traditional method for
estimating measurement error variances yields (based on asymptotic maximum likelihood
formulas) quite biased estimates of measurement error at the extremes of the achievement
distribution. Fortunately, it is feasible to apply finite sample methods to obtain unbiased
estimates of measurement error variances with respect to Rasch scale estimates and test score
scales based on this scale (for example, the TL1). In subsequent research, we plan to generalize
the finite sample approach to awider class of test theory models—in particular, the three-
parameter logistic and two-parameter partial credit models. These latter models are frequently
used to scale tests based on multiple choice and constructed-response items.

We also demonstrated that it isimportant to be careful when analyzing data with weak
control variables. Based on our analysis, we concluded that it was best to present estimates based
on two estimating methods (OLS and EV 1) rather than on a single method. We argued that the
true model estimates (given possible biases due to weak controls) were likely to be in the range
of estimates given by the OLS and EV1 estimates.
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