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8. AN EVALUATION OF THE URBAN SYSTEMIC INITIATIVE AND OTHER 
ACADEMIC REFORMS IN TEXAS: STATISTICAL MODELS FOR 

 ANALYZING LARGE-SCALE DATA SETS 
  

Robert H. Meyer 
 
 

Executive Summary 
 
 A multidisciplinary team worked over a year to achieve the Systemic Initiatives: Student 
Achievement Analysis Study�s main goal of developing an analytic framework for studying the 
degree to which systemic reform contributes to improved student achievement and other 
outcomes. In pursuing this goal, we sought to provide information to the National Science 
Foundation that will enable NSF, its education constituencies, and the education research 
community address the following questions: 
 

1.  How can the data submitted to NSF by systemic initiatives (SIs) be used to 
evaluate systemic reform? 

2.  How does the precision of analysis depend upon the qualities of student 
assessment data? 

3.  What statistical models best fit the data linking systemic initiatives to student 
achievement? 

4.  What are the lessons learned about the kind of databases and analyses that are 
most effective for evaluating and understanding systemic reform? 

 
To demonstrate our approach to developing analytic frameworks, we analyzed data from the 
Texas Assessment of Academic Skills (TAAS) for grades 3 through 8 from 1994 through 2000 
and compared Urban Systemic Initiative (USI) districts with other districts in the state.  
 

 We identified a number of desirable features of data and databases that are needed to 
study the impact of the systemic initiatives and other large-scale reforms:  

 
1. Data that describe for the USI, or other initiative, the participation level of 

teachers by school;  
 2. An identifiable control group; 
 3. Testing of students in consecutive years; 
 4. Vertically scaled scores over grades; 

5. An assessment that measures the full range of student knowledge without ceiling 
effects; 

6. Assessment data linked with student, school, and district demographic and 
program data; 

7. Alignment of assessments with district standards and USI goals; and, 
8. A means of determining student attrition rates in the population and the selective 

exclusion of students from testing. 
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We identified three general areas that can influence the precision of analyses of student 
achievement data in studying the impact of systemic reform that need to be considered: (1) the 
extent to which teachers, schools, and districts participated in the systemic initiative over time; 
(2) what students were excluded from the testing and analyses; and, (3) the standard error of 
measurement in the assessment instruments.  
 

There is no one best model for analyzing the link between systemic initiatives and student 
achievement. Each model is based on specific assumptions made necessary by the 
incompleteness of available data or other constraints. We developed three approaches, each by a 
different researcher. All three models provide information about students’ growth over time and 
compare the performance by students in USI districts with those in other districts. In this respect, 
the results from one model serve as a replication of those from the other models. However, each 
of the three researchers made different assumptions about growth that influenced which groups 
of students were tracked over time. Bolt examined changes in school means on TAAS at a given 
grade level (e.g., grade 5 in 1994, 1995, 1996, etc.). He assumed that this approach would more 
effectively control for teacher effects because the same teachers are more likely to teach the 
same grade in successive years. Within-grade analysis also is more comparable with the nature 
of TAAS and the TLI scores that are equated within grades. His model implies that the variation 
among different cohorts of students (e.g., 4th grade students in 1995 compared with 4th grade 
students in 1996) is due to program effects, rather than to other factors. 

 
Gamoran used nearly all of the students in the database to estimate the growth intercepts 

and slope. In this very robust model, students with any two scores, even those whose scores are 
not for consecutive years, can be used to estimate the parameters. To develop estimates for a 
model with a quadratic term requires students with four data points in order to estimate the three 
parameters intercept, slope (linear term), and changed (quadratic term). Students with fewer than 
four data points contribute to estimating the lower-order terms. Thus, Gamoran’s growth model 
included students who left or entered the system during the period investigated. He also included 
students who changed schools within the system, state, or district. Students who were retained in 
a grade and had two scores for the same grade were deleted from the database used in the 
analysis.       

 
Meyer’s value-added analysis examined students’ performance in a grade by taking into 

consideration achievement from the year before. His analyses included only students who had 
test scores for two consecutive years (e.g., grades 3 and 4, grades 4 and 5, etc.). This was a more 
restrictive requirement than that used by the other two researchers. The advantage of this 
approach is that greater precision could be given to improved student performance that can be 
attributed to a school year. The other two researchers computed the intercept term, or the initial 
performance at grade 3, that was used to compare the starting points among districts, but their 
models computed the difference between any two grades using equations developed to fit all of 
the points over the seven years, rather than just between two years. 

 
Based on the three analytic models, we drew the following conclusions: 

 
1. Texas Assessment of Academic Skills (TAAS) scores improved from 1994 to 2000 for 

all groups. Annual gain scores by Blacks and Hispanic students relative to White students 
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improved over time. Annual gain scores for economically disadvantaged remained 
constant over time. 

 
2. USI districts began lower, but raised scores faster than non-USI districts: 
 

A. There is some evidence that USI districts improved faster than non-USI    districts, but 
this may be due to the scoring metric used (e.g., TLI rather than Rasch). Meyer found 
positive USI effects over time for most grade levels. Bolt found a positive USI effect 
at grade 7.  

B. Texas USI scores started below those of non-USI districts and produced  
     smaller annual gains than non-USIs in 1994. 

 C. There is no evidence that USI districts lost ground compared to non-USI 
      districts from 1994-2000. 
 

3. Achievement gaps between minority and White students and between advantaged and 
disadvantaged students narrowed statewide on the TLI.  However, this finding was highly 
dependent on the scaling metric used. There was much less narrowing of gaps when the 
Rasch scale, which is more sensitive to gains at the extreme ends of achievement, was 
used rather than the TLI. There was some evidence from one model that the gap between 
White students and Black students narrowed more in USI districts than in the contrast 
districts.  

  
4. There is no difference in the rate at which achievement gaps are narrowing in USI and 

non-USI districts. 
 
5. An increasing proportion of students were tested over time. 
  

A.  TAAS attrition rates in students not being tested went down over time. 
B.  There was no difference in the TAAS attrition rate between USI districts and 
      large urban districts that are not USIs. 

 
6. There are large differences in TAAS attrition by demographic group. 

 
 Demonstrating the impact of large-scale reform is immensely complex. This project has 
revealed the reasons for much of this complexity and has demonstrated specific analytic 
techniques that can be used to study the growth in student learning over time, given this 
complexity. Being restricted to only using existing data, we were unable to over come major 
design flaws and the lack of data on the independent variables. Even with these deficiencies, the 
models produced some evidence of the improvement in student learning by districts with USIs 
compared to other districts. The analytic models used in this study have wide applicability in 
studying large-scale reform. The most important implication of this study is to inform the design 
of the evaluations of large-scale reform efforts so that the necessary data will in future be 
available to more effectively measure the impact of such interventions on student learning. 
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Introduction 
 
 This paper draws on a large-scale data set, consisting of all students tested as part of the 
Texas Assessment of Academic Skills (TAAS), as a basis for evaluating the effectiveness of the 
Urban Systemic Initiative (USI) and academic reforms as a whole in Texas over the period 1994 
to 2000. The paper focuses on developing statistical methods that are suitable for analyzing 
programs using large-scale data sets consisting of many students assessed in multiple years. The 
Texas data set examined here includes information on approximately two million students each 
year in grades 3 to 8. The study employs a model of student achievement in mathematics that 
features two levels, a student level (the “micro,” or level-one equation) and a district level (the 
“macro,” or level-two equation). It builds on the conventional postachievement-on- 
preachievement model, but includes several novel features: 
 

• The model uses two alternative scales for measuring mathematics achievement. One is 
the Texas Learning Index (TLI), the scale used by the Texas Educational Agency (TEA).  
The other is a Rasch scale developed as a part of this research project. The paper 
investigates the extent to which major conclusions are sensitive to the choice of 
achievement scale. 

• The model controls for measurement error in prior mathematics achievement. See Meyer 
(1992, 1999) for achievement models that address the problem of measurement error. 

• Estimates of measurement error are derived for the Rasch scale using two approaches: the 
conventional approach based on an asymptotic (maximum likelihood) formula for the 
variance of the achievement estimate and an approach based on a finite sample formula.  
The latter provides substantially different and more accurate results than the conventional 
approach. 

 
In the next part, we consider alternative scales for measuring mathematics achievement. 

Subsequent sections present the evaluation methods used in the study, finite sample methods for 
estimating the measurement error characteristics of the Rasch scale and Texas Learning Index, 
the empirical results of the study, and the conclusions of the study. 
 

Alternative Scales for Measuring Mathematics Achievement 
 

 Achievement scores produced by the Texas Assessment of Academic Skills (TAAS) are 
typically reported on a scale known as the Texas Learning Index (TLI). The TLI scale is derived 
from a standard psychometric model of test scores, the Rasch model, but it differs substantially 
from the scale typically produced by the Rasch model. One of the objectives of this study is to 
compare results based on the TLI and the Rasch scale. TLI scores (and the Rasch scale scores 
that underlie this index) are designed to be comparable over time at a given grade level 
(horizontally equated), but are not comparable across grades (not vertically equated). As a result, 
it is not possible to explicitly measure student achievement growth using the Texas achievement 
data. This is not a major limitation, however, because the “post on pre” evaluation models used 
in this study do not require that posttests and pretests be measured on the same scale.1 
 

                                                 
1 Many growth curve models require test scores to be measured on the same scale. 
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 The Texas Learning Index is quite simple. In the base year (1994), TLI was a linear 
transformation of the raw (number correct) score R. In subsequent years, it was (and continues to 
be) a linear transformation of the equated (predicted) raw score. The transformation from raw 
score to TLI is given by: 
 

 94
0

94

TLI T(R)= *15 70R R z
s

  −≡ − +  
  

 (1) 

 
where 94R  and s94  represent the mean and standard deviation of raw test scores in the base year 
and z0 is the passing standard selected by the state (defined in the units of a standardized z score).  
The index is normed so that it had a standard deviation in the base year equal to 15 and a passing 
cut point equal to 70. It appears that in most grades the state selected a passing standard fairly 
close to the mean score (that is, a z score equal to zero). As a result, the TLI is essentially 
normed to have a mean of 70 in the base year. 
 
 Since raw scores are generally not comparable across different test forms (due to 
differences in the difficulty of test items), the TLI in years other than the base year is derived 
from an underlying Rasch score (θ) that is designed to be comparable across years (at a given 
grade level). Given an estimate of θ, a Rasch model is used to predict the raw score that a student 
would have received on the original 1994 TAAS ( 94R̂ ). Finally, this score is converted to a TLI, 
using formula (1). (See below for the appropriate formulas.) 
 

The TLI and the Rasch score are both legitimate measures of student achievement.  
However, as indicated below, they have very different characteristics. In this study we 
investigate the extent to which major empirical findings are sensitive to the choice of 
achievement scale. To make it easier to compare the results using both scores, we normed the 
Rasch scale so that it has the same mean and standard deviation as the TLI in the base year (at 
each grade level). A separate appendix presents the technical details for how we computed the 
Rasch scale. 
 
Formulas for Estimating the Rasch Scale and the Texas Learning Index (TLI)  
 
 The maximum likelihood estimate of the Rasch ability parameter θ is given by2: 
 1ˆ ( )t tC Rθ −=  (2) 
 
where 1( )tC R−  is the inverse function of the test characteristic curve (TCC) for the test 
administered in year t. The test characteristic curve is equal to the expected raw score: 
 

                                                 
2 Since there is no closed-form solution to the inverse of the test characteristic curve, estimates of Rasch ability 
parameters are typically obtained using numerical methods. Although this is not particularly difficult or time 
consuming, Wright (1977) presents formulas that allow direct computation of approximate estimates of Rasch 
ability. These formulas were used by TEA to compute their Rasch estimates (which were used, in turn, to compute 
TLI). The Rasch estimates used in this paper were obtained by solving equation (2). 
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that is, the sum over all test items of the probability that an individual with ability θ gets item 
i correct. In the Rasch model (and other item response theory (IRT) models), ability estimates for 
students with extreme scores (zero correct (R=0) and zero incorrect (R=n)) are not defined. We 
follow the common practice of assigning Rasch scores for these students as if their actual 
number correct scores were R = 0.5 and R = n – 0.5, respectively. As indicated above, the Rasch 
ability parameter estimates are linearly transformed to obtain a Rasch scale that has the same 
mean and standard deviation as the TLI in the base year (at each grade level): 
 
 ˆRasch Scale g ga b θ= +  (4) 
 
where ag and bg  are the transformation parameters for grade g. 
 
 In order to obtain the TLI score in years other than the base year, the test characteristic 
curve for 1994 is used to predict the raw score 94R̂ , given θ̂  (computed in any year):3 
 
 94 94

ˆˆ ( )R C θ= . (5) 
 
The TLI is then computed using (1). 
 
 Given the assumptions of the Rasch model, the item probabilities in (3) are given by the 
logit function: 
 

 ( ){ } 1
( ; ) 1 expi t itP d D dθ θ

−
= + − −  %

 (6) 

 
where dit is the difficulty of item i  in year t, td

%
represents the vector of item difficulties, and D = 

1.7.4 In the next section, we will look at some graphs that depict the highly nonlinear relationship 
(implied by formula (3)) between the Rasch scale and the TLI and other features of the two 
scales. 
 
A Comparison of the Texas Learning Index with the Rasch Scale 
 
 Figure 8.1 presents two graphs that compare the TLI with the Rasch scale for grade 3 in 
1994. The graphs for other grades and years are very similar. The top graph plots the official 
TLI, a number that is rounded to two digits, against the Rasch scale. The bottom graph plots the 
TLI, without rounding, against the Rasch scale. Due to the lack of rounding, the bottom curve 

                                                 
3 For the purpose of computing predicted raw scores (and ultimately the TLI), there is no need to “patch up” the θ 
estimates for the zero-correct and perfect raw scores. If a student received a perfect (zero-correct) score in any year, 
the predicted raw score on the 1994 test is also a perfect (zero-correct) score. 
4 The constant D = 1.7 scales θ so that the logit function closely approximates the standard normal cumulative 
distribution function (also the probit function). 
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exhibits greater smoothness than the top curve. Both graphs make the same point: relative to the 
Rasch scale, the TLI significantly rolls off achievement at the high end.5 In fact, the curve 
asymptotically approaches a maximum TLI score of 93. This means that the TLI is simply not 
equipped to register (possibly future) increases in achievement beyond a maximum level. This 
implies that achievement growth near the high end of the distribution will appear more modest 
when measured with the TLI than with the Rasch scale. Furthermore, the distribution of the TLI 
is likely to be substantially skewed to the left, relative to the Rasch scale. 
 
 The latter prediction is evident in Figures 8.2 to 8.5. These figures present the distribution 
of the Rasch scale and TLI in grades 3 and 8 in two different years, 1994, the base year, and 
2000, the final year of data. As indicated in Figure 8.2 (top graph), the distribution of the Rasch 
scale in 3rd grade in 1994 looks approximately bell-shaped. The distribution of the TLI (bottom 
graph), on the other hand, is heavily skewed to the left and piled up on the right side. Figure 8.3 
indicates that the distribution of 3rd grade achievement shifted significantly to the right from 
1994 to 2000. The average Rasch score increased from 69.78 to 80.65. The average TLI 
increased somewhat less, from 69.78 to 78.48. As in 1994, the distribution of the Rasch score in 
2000 is reasonably symmetric with a modest concentration of data at the high end. The standard 
deviation of Rasch scale scores increased from 15.32 in 1994 to 16.69 in 2000. In contrast, the 
standard deviation of the TLI decreased from 15.32 in 1994 to 12.69 in 2000 and the test 
distribution became even more skewed. Figures 8.4 and 8.5 tell a similar story with respect to 8th 
grade test scores, although the differences between the Rasch scale and TLI are even more 
pronounced. Finally, Tables 8.1 to 8.6 indicate that at all grade levels the Rasch scale and TLI 
exhibit completely different patterns with respect to the spread of test scores. The Rasch scale 
paints a picture of rising average test scores and expanding spread (as measured by the standard 
deviation). The TLI tells a different story—rising average test scores and declining spread.  
These simple statistics highlight the fact that conclusions about the efficacy of programs and 
educational reforms may be quite sensitive to the choice of achievement scale. As a result, we 
will present results later in the study that make use of both the Rasch scale and the TLI. 
 

Evaluation Methods 
 

 This section explains the statistical models and methods we use in our analyses. The first 
part presents a conventional post-achievement on pre-achievement model with two levels, a 
student level (the “micro,” or level-one equation) and a district level (the “macro,” or level-two 
equation). The second part investigates the validity of the model in light of the fact that the 
available set of explanatory variables is thin (as is the case with almost all administrative data 
bases). The third presents methods for correcting for measurement error in achievement tests.  
The final section presents an estimation strategy that is optimized for very large data sets (in our  

                                                 
5 Achievement is also theoretically rolled off at the low end but there are very few students with test scores in this 
region.   
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Figure 8.2. Distribution of the Rasch scale and Texas Learning Index in grade 3, 1994. 
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Figure 8.3. Distribution of the Rasch scale and Texas Learning index in grade 3, 2000. 
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Figure 8.4. Distribution of the Rasch scale and Texas Learning index in grade 8, 1994. 
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Figure 8.5. Distribution of the Rasch scale and Texas Learning Index in grade 8, 2000. 
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Table 8.1 
Average Test Scores and Demographic Characteristics by Year, Grade 3 

   1994 1995 1996 1997 1998 1999 2000 
          
   Statistics Computed by WCER  
          
 TLI Mean 69.78 72.63 75.57 77.56 77.21 78.07 78.48
  Std. Dev. 15.33 15.25 14.89 13.47 13.07 12.38 12.70
          
 Rasch Scale Mean 69.78 73.25 77.18 79.40 78.45 79.60 80.65
  Std. Dev. 15.33 16.19 17.07 16.62 15.92 15.74 16.69
          
Ethnicity Black Mean 0.141 0.143 0.146 0.145 0.144 0.142 0.137
 Hispanic Mean 0.286 0.288 0.290 0.297 0.306 0.322 0.359
 White Mean 0.541 0.536 0.532 0.530 0.527 0.518 0.490
 Other Mean 0.015 0.015 0.015 0.016 0.014 0.012 0.013
 Mixed ReportMean 0.018 0.018 0.017 0.013 0.009 0.006 0.001
Gender   Mean 0.501 0.500 0.504 0.503 0.501 0.498 0.502
Disadvantaged Mean 0.420 0.427 0.440 0.455 0.469 0.473 0.504
Sample   227076 218998 219919 223059 224648 223562 221098
          
   Statistics Reported on Website of Texas Education Agency  
          
 TLI Mean 69.7 72.7 75.4 77.3 77.0 77.9 78.3
  Sample 240420 235238 238002 243208 249463 253022 263481

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 8.2 
Average Test Scores and Demographic Characteristics by Year, Grade 4 

 
 
   1994 1995 1996 1997 1998 1999 2000 
          
   Statistics Computed by WCER  
          
 TLI Mean 69.87 73.92 76.16 77.82 78.87 80.54 81.03
  Std. Dev. 15.16 14.00 13.69 12.71 11.85 10.25 10.90
          
 Rasch Scale Mean 69.87 74.35 77.54 79.32 81.19 83.14 84.95
  Std. Dev. 15.16 15.83 16.53 15.78 15.97 15.11 16.27
          
Ethnicity Black Mean 0.137 0.136 0.138 0.140 0.139 0.138 0.130
 Hispanic Mean 0.297 0.296 0.301 0.310 0.315 0.328 0.360
 White Mean 0.536 0.534 0.527 0.517 0.516 0.509 0.491
 Other Mean 0.016 0.016 0.016 0.017 0.018 0.015 0.013
 Mixed ReportMean 0.013 0.018 0.018 0.016 0.013 0.009 0.006
Gender   Mean 0.498 0.498 0.501 0.501 0.502 0.497 0.496
Disadvantaged Mean 0.416 0.422 0.433 0.447 0.461 0.476 0.492
Sample   223607 225205 227058 230670 233130 228620 233228
          
   Statistics Reported on Website of Texas Education Agency  
          
 TLI Mean 69.8 73.8 76.1 77.6 78.7 80.5 80.9
  N 236303 240071 235762 247002 250832 251193 264865
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Table 8.3 
Average Test Scores and Demographic Characteristics by Year, Grade 5

   1994 1995 1996 1997 1998 1999 2000 
          
   Statistics Computed by WCER  
          
 TLI Mean 70.23 73.78 76.22 79.33 80.83 83.04 83.99
  Std. Dev. 15.13 14.87 13.71 12.29 11.59 10.13 9.55
          
 Rasch Scale Mean 70.23 74.24 77.02 81.11 83.35 87.37 89.33
  Std. Dev. 15.13 16.09 16.06 16.10 16.09 16.21 16.20
          
Ethnicity Black Mean 0.135 0.135 0.132 0.133 0.137 0.135 0.130
 Hispanic Mean 0.309 0.310 0.309 0.319 0.326 0.338 0.360
 White Mean 0.528 0.525 0.525 0.513 0.503 0.496 0.485
 Other Mean 0.016 0.017 0.017 0.018 0.018 0.019 0.016
 Mixed ReportMean 0.011 0.013 0.017 0.018 0.016 0.012 0.009
Gender   Mean 0.499 0.498 0.501 0.501 0.502 0.498 0.496
Disadvantaged Mean 0.407 0.424 0.431 0.442 0.455 0.470 0.493
Sample   228383 226018 236624 239639 242323 239675 238753
          
   Statistics Reported on Website of Texas Education Agency  
          
 TLI Mean 70.2 73.8 76.2 79.2 80.7 83.0 83.9
  N 241963 240577 252219 254528 256008 254344 263231
 Table 8.4 
 Average Test Scores and Demographic Characteristics by Year, Grade 6 
   1994 1995 1996 1997 1998 1999 2000 
          
   Statistics Computed by WCER  
          
 TLI Mean 69.81 71.69 75.65 77.62 79.28 81.27 81.95
  Std. Dev. 15.23 14.26 13.22 12.91 11.67 10.86 10.10
          
 Rasch Scale Mean 69.81 71.50 76.15 79.02 81.50 84.95 85.41
  Std. Dev. 15.23 15.55 15.54 16.18 15.70 16.65 15.62
          
Ethnicity Black Mean 0.135 0.134 0.132 0.129 0.130 0.134 0.131
 Hispanic Mean 0.319 0.325 0.330 0.333 0.345 0.355 0.366
 White Mean 0.520 0.512 0.507 0.502 0.488 0.475 0.471
 Other Mean 0.017 0.017 0.018 0.019 0.019 0.020 0.020
 Mixed Report Mean 0.008 0.012 0.013 0.017 0.017 0.016 0.012
Gender   Mean 0.500 0.500 0.502 0.503 0.504 0.500 0.500
Disadvantaged Mean 0.397 0.417 0.439 0.444 0.457 0.469 0.487
Sample   236264 235222 240656 254166 256868 253774 252164
          
   Statistics Reported on Website of Texas Education Agency  
          
 TLI Mean 69.7 71.7 75.6 77.5 79.2 81.2 81.9
  N 248142 249185 255797 267428 268503 263847 266829
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Table 8.6 
Average Test Scores and Demographic Characteristics by Year, Grade 8 
 
   1994 1995 1996 1997 1998 1999 2000 
          
   Statistics Computed by WCER  
          
 TLI Mean 69.25 68.79 72.55 75.48 77.39 80.11 81.54
  Std. Dev. 15.43 14.90 14.91 14.04 12.65 11.04 9.52
          
 Rasch Scale Mean 69.25 68.30 72.97 76.67 78.10 81.88 85.33
  Std. Dev. 15.43 14.98 16.27 16.73 15.69 15.38 15.80
          
Ethnicity Black Mean 0.132 0.130 0.130 0.128 0.128 0.128 0.129
 Hispanic Mean 0.314 0.323 0.331 0.332 0.339 0.339 0.352
 White Mean 0.535 0.524 0.513 0.509 0.499 0.495 0.480
 Other Mean 0.017 0.018 0.019 0.020 0.021 0.021 0.022
 Mixed Report Mean 0.001 0.005 0.008 0.011 0.013 0.017 0.017
Gender   Mean 0.497 0.496 0.501 0.503 0.503 0.500 0.498
Disadvantaged Mean 0.339 0.363 0.394 0.409 0.430 0.431 0.446
Sample   218012 225479 236061 244756 250303 253494 254410
          
   Statistics Reported on Website of Texas Education Agency  
          
 TLI Mean 69.1 68.8 72.5 75.3 77.3 80.1 81.5
  N 236016 241880 252425 259065 262324 263165 263858

Table 8.5. 
Average Test Scores and Demographic Characteristics by Year, Grade 7 

  1994 1995 1996 1997 1998 1999 2000 
         
  Statistics Computed by WCER  
         
TLI Mean 69.68 70.92 74.30 76.34 78.22 80.39 81.55
 Std. Dev. 15.39 15.23 14.36 13.10 12.57 12.06 10.48
         
Rasch Scale Mean 69.68 71.50 75.35 76.91 79.44 86.34 86.54
 Std. Dev. 15.39 16.42 16.91 15.41 16.04 18.73 17.21
         
Black Mean 0.133 0.132 0.132 0.129 0.128 0.132 0.133
Hispanic Mean 0.319 0.329 0.332 0.336 0.339 0.349 0.362
White Mean 0.525 0.513 0.506 0.502 0.495 0.482 0.468
Other Mean 0.017 0.018 0.018 0.020 0.020 0.021 0.021
Mixed ReportMean 0.005 0.008 0.011 0.013 0.017 0.017 0.016
 Mean 0.500 0.500 0.504 0.504 0.504 0.500 0.501
 Mean 0.367 0.397 0.420 0.434 0.443 0.452 0.469
  232149 235539 243272 250259 260077 257337 257212
         
  Statistics Reported on Website of Texas Education Agency  
         
TLI Mean 69.6 70.9 74.3 76.2 78.1 80.4 81.5
 N 245376 249928 258200 263350 271295 266437 267249
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case, well over 10 million observations). These methods produce consistent parameter estimates 
using SAS software with computer run times of less than 10 minutes on a personal computer. 
 
A Multilevel Model of Student Achievement 
 
 The model used here takes the form of a conventional multilevel “post on pre” model 
(postachievement on preachievement) where, at this point, we assume that all variables are 
measured without error. The two levels of the model are given by: 
 

 1, 1
1

gtj J

igt g ig t g igt jgt ijgt igt
j

Y Y X Sγ β α ε
=

− −
=

′= + + +∑  (7) 

 jgt jgt jgtW rα δ= +  (8) 
 
where i  indexes students, j indexes districts, g indexes grades, t indexes years, and gtJ = number 
of districts in grade g and year t. 
 
 Equation (7) captures the student-level determinants of growth in student achievement.  
Yigt and Yig-1,t-1 represent student mathematics achievement in years t and (t-1), respectively (for 
student i  in grade g); Xigt  represents student characteristics (such as gender, race/ethnicity, and 
income status); Sijgt  is a zero/one indicator that is equal to one if student i  attends school in 
district j, zero otherwise; gγ , gβ , and jgtα  are parameters; and igtε  is a student-level error term.  
The parameter jgtα measures district productivity, a value-added measure of the contribution of 
district j to growth in mathematics achievement in a single grade (g) and year (t). We follow the 
convention of “norming” the α parameters so that their average is zero in the base year (1994-
1995) in each grade. Note that all of the parameters are allowed to differ by grade (and hence are 
subscripted by g). It might be reasonable to impose the restriction that γg and βg are identical 
across grades if the achievement scores at different grade levels were measured on a common 
(vertically equated) scale. Since this is not the case with the Texas achievement data, we do not 
impose this restriction. We do, however, consider the possibility that the parameters may change 
over time in response to changes in policy. Equation (8) captures the district-level determinants 
of district productivity. jgtW  represents district program variables—in particular, whether the 
district participated in the Urban Systemic Initiative (USI) or not; δ is a parameter vector; and 

jgtr is a district-level error term. One of the major strengths of this model specification is that it is 
straightforward to measure school district productivity by grade and year. This is essential if the 
determinants of productivity (that is; programs and policies) also vary across grades and over 
time, as they do in this study. 
 
 Although the above model has been used extensively to evaluate educational programs 
and policies, we address several potential threats to the validity of the model, in particular, weak 
control variables and measurement error in prior achievement. These issues are considered 
below. 
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Interpretation of a Model With Weak Control Variables 
 
 One potential problem with conducting evaluation research using administrative data is 
that student and family information is typically rather thin. Variables such as parental education, 
family status (two-parent or one-parent family), parental income, parents’ occupation, and 
parents’ attitudes toward education are known from previous research to influence growth in 
student achievement, but are rarely available in administrative data. This is the case in the 
present study. As a result, it is important to understand how this affects the validity of the 
analysis. 
 
 To simplify the notation, consider the student-level model for 2nd grade in a given year: 
 
 2 2 1 2 2 2 2i i i i iY Y X Sγ β α ε′ ′= + + +  (9) 
 
where 2iY  and 1iY are the post-test and pre-test, respectively, iX  is a vector with a weak set of 
student-level control variables, and 2iS  is a vector of school district indicators. (The year 
subscripts are suppressed for convenience.) Given that the control variables are weak, it is 
inappropriate to adopt the conventional assumption that the student-level error term is random 
and uncorrelated with the right-hand side variables. Instead, we assume that the error term 
consists of two orthogonal components: a random component 2ie and a component 2iu that may 
be correlated with the regressors; that is: 
 
 2 2 2i i iu eε = + . 
 
To allow for the possibility that that 2iu may be correlated with the regressors in equation (9), we 
define the following linear predictor equation: 
 

 2 1 1 2 2 3i o i i i iu Y X S wλ λ λ′ ′= + + +  (10) 
 
where 3iw is by definition uncorrelated with the regressors. Substituting this equation into (3) 
yields: 
 2 2 2 1 2 1 2 2 2 2 2 .( ) ( ) ( )i i i i i iY Y X S w eγ λ β λ α λ′ ′= + + + + + + +  (11) 
 
As indicated, the λ parameters capture the bias in the parameters due to the weak regressors. 
 
 Given the possibility that the model parameters could be biased if the control variables 
are weak, it is important to consider whether there is some other, perhaps more statistically 
advanced, method for obtaining consistent parameter estimates. One possibility is the dynamic 
fixed effects model studied by Anderson and Hsiao (1981, 1982). (Also see Hsiao, 1986). To 
implement this model, we add an equation for 3rd grade achievement (for the same cohort of 
students as in 2nd grade). This yields the following pair of equations: 
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  2 2 1 2 2 2 2 2

3 3 2 3 3 3 3 3

i i i i i i

i i i i i i

Y Y X S u e
Y Y X S u e

γ β α
γ β α

′ ′= + + + +
′ ′= + + + +

. (12) 

 
Assume that the following conditions hold: 
 

• The parameters γ and β are identical in the models for grades two and three.  (The critical 
assumption is that γ is identical in both equations.) 

• Unobserved differences in student characteristics are captured by a time-invariant 
component iu ; that is, 2 3 .i i iu u u= =  

• The random components 2ie and 3ie are not (serially) correlated. 
 
Given these assumptions the two equations can be differenced to eliminate the time-invariant 
component iu , yielding: 
 
 3 2 2 1 3 3 2 2 3 2( )i i i i i i i iY Y Y Y S S e eγ α α′ ′− = − + − + − . (13) 
 
It is straightforward to estimate this equation using the method of instrumental variables 
(Anderson & Hsiao, 1981).6 At first glance, it appears that this approach yields estimates of 
school district effects in both second and third grade. Unfortunately, this is correct only if 

2 3i iS S≠ ; that is, only if at least some students move between districts between second and third 
grade. In fact, this approach will yield precise estimates of α2 and α3 only if there is substantial 
mobility between districts. This condition is unlikely to be met. 
 
 In the absence of substantial district mobility, one option is to use (13) to estimate γ and 
then estimate the other parameters of the model given the consistent estimate of γ (call this γ̂ ).  
This is equivalent to estimating the following equation for Y2i (and similarly for Y3i):7 
 
 2 1 2 2 2ˆi i i i i iY Y X S u eγ β α′ ′− = + + + . (14) 
 
Unfortunately, this method does not eliminate bias due to the possible correlation between ui and 
Xi  and S2i. Indeed, as is suggested below, this bias may be larger than the bias obtained from the 
standard model (see equation (11)). To see this, define the following linear predictor equations: 
 
 1 2 2 1i i i iu X S wφ φ′ ′= + +  (15) 
 1 1 2 2 2i i i iY X S wη η′ ′= + +  (16) 
 
where by definition w1i and w2i are uncorrelated with the regressors. Substituting (15) into (14) 
yields: 
 
                                                 
6 Given that (Y2-Y1) is correlated with the error term (e3-e2), the acceptable instrumental variables include Y1 and any 
prior lagged values of Y, S3, S2, and X. 
7 This method is suggested by Hsiao (1986). Note that some efficiency gains could be obtained by using the general 
method of moments (GMM) to estimate equations (13) and (14) jointly. 
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 2 1 1 2 2 2 1 2ˆ ( ) ( )i i i i i iY Y X S w eγ β φ α φ′ ′− = + + + + + . (17) 
 
As indicated, the φ parameters capture the bias in the parameters due to the weak regressors. 
 
 Now, let’s compare the biases obtained from the two different approaches for the school 
district effects. It can be shown that the biases from the two approaches are given by: 
 
 Conventional Approach: 2 2 0 2Bias = λ φ λ η= −  (18) 
 Difference Equation Approach: 2Bias = φ  (19) 
 
Notice that the bias from the conventional approach is the sum of two terms. If the vectors φ2 and 
η2 have the same sign,8 then the two terms in (18) may be partially offsetting. As a result, the 
conventional approach (which yields a biased estimate of the pretest parameter if the control 
variables are weak) may yield estimates of school district effects that are actually less biased 
than the approach (based on the difference equation) that yields a consistent estimate of the 
pretest parameter: that is, if the control variables are weak, the best strategy may be to allow the 
pretest variable Y1i to serve as a proxy for the omitted variables. The conventional method does 
this. This yields a (presumably) upward biased estimate of the pretest parameter 0( 0)λ > , but an 
estimate of the school district effect that may be less biased than other estimates. 
 
 The bottom line is perhaps somewhat surprising: the conventional approach may yield 
estimates of school district effects that are reasonable, even if the control variables are weak.9 In 
any case, the difference equation approach discussed above is not an available option in the 
present study due to the fact that the achievement data used in this study were not vertically 
equated across grades.10 As a result, it is unreasonable to assume that pretest parameters from 
different grade-level models are identical, a requirement of the difference equation approach. 
 
 In the remainder of this paper, we build on the conventional “post on pre” value-added 
model. To keep the notation simple, we drop the bias parameters (λ’s) and, in effect, redefine the 
level-one parameters (γ, β, and α) to incorporate the bias due to thin control variables. In the next 
section, we extend this model to control for measurement error in achievement scores. 
 
Controlling for Measurement Error in Achievement Scores 
 
 As demonstrated in Meyer (1992, 1999), measurement error in prior achievement, if 
uncorrected, induces a downward bias in the pretest parameter γg and causes bias in all of the 
other parameters in the model. Meyer presented two methods for correcting for measurement 

                                                 
8 Consider the following thought experiment. Suppose that the component ui is a linear combination of the following 
omitted variables: parental education and parental income. It seems likely that school districts (or schools) that have 
high average achievement scores (Y1i) also have high average parental education and parental income (ui). This 
implies that φ2 and η2 have the same sign, or equivalently, that the parameter vectors are positively correlated across 
districts. 
9 A topic for future research is to develop estimation methods that yield, given reasonable assumptions, consistent 
estimates of all parameters. 
10 The test scores were horizontally equated across years at each grade level. 
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error, the errors in variables (EV) approach and the instrumental variables (IV) approach. (See 
Fuller, 1987) for a comprehensive presentation of these methods.) The EV approach uses 
externally provided information on the variance of measurement error to correct the sample 
variance-covariance matrix. The IV method corrects for measurement error by using 
instrumental variables to obtain error-free predictors of variables measured with error. The 
validity of the IV approach depends on whether the selected instrumental variables satisfy the 
required conditions—namely, that the variables are correlated with regressors in the model but 
uncorrelated with in-equation error and all errors in measurement. Below, we discuss how the 
EV and IV methods were implemented in the present study. 
 
 The key to using the EV approach is to obtain external information on the variance of 
measurement for all variables measured with error. In the previous studies by Meyer (1992, 
1999), achievement was measured using raw (number right) scores. In the case of raw scores, it 
is customary to assume that the variance of test error is constant for all individuals and to 
compute this variance using the formulas for Cronbach’s coefficient alpha (or, equivalently, 
Kuder-Richardson formula KR-20) (Allen & Yen, 1979). Most test developers routinely provide 
this information for the tests that they publish. 
 

In the present study, we need to correct for measurement error in mathematics 
achievement as measured by the Rasch scale and the TLI. This poses some new technical 
wrinkles. With respect to the Rasch scale (or any scale developed using an alternative item 
response theory (IRT) model), it is customary to assume that the variance of test error differs as a 
function of true achievement (that is, achievement measured without error). This is, in fact, 
implied by item response theory (Lord, 1980). We next consider two alternative methods for 
estimating this variance: 

 
• Approach 1: an approach based on a finite sample formula for the error variance. 
• Approach 2: the conventional approach based on an asymptotic (maximum likelihood) 

formula for the error variance. 
 

A major finding of the study is that the finite sample approach provides substantially different 
and more accurate results than the conventional approach. This approach deserves to be used 
more widely where information on the accuracy of student test scores is needed. Both estimates 
of measurement error are used to implement the errors in variable estimators. They are referred 
to as the EV1 and EV2 methods. 

 
 The standard EV approach corrects for measurement error, but it does not explicitly treat 
the fact that the measurement error variances of the pretest and posttest variables are not constant 
(homoscedastic). As a result, we experimented with a weighted EV estimator that corrects for 
measurement error and heteroscedasticity in the error term. Since this produced estimates (and 
standard errors) that were nearly identical to those obtained using the standard EV approach, we 
do not report the estimates in this study. 
 
 The key to implementing the IV approach is to find a credible set of instrumental 
variables. As indicated above, an acceptable instrumental variable must be correlated with 
regressors in the model but uncorrelated with the in-equation error and all errors in measurement.  
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Possible instrumental variables include twice-lagged achievement Yig-2,t-2 and the other regressors 
Xigt  and Sijgt (the latter assumed to be measured without error). Twice-lagged achievement 
satisfies two of the three conditions for an instrumental variable: it is certainly correlated with 
prior achievement Yig-1,t-1 and it is reasonable to assume that it is uncorrelated with the 
measurement error component of prior achievement. But, is it uncorrelated with the in-equation 
error εigt? In a model with rich control variables this may be a very reasonable assumption. In a 
model with weak control variables—our situation—it is likely that twice-lagged achievement is 
correlated with the nonrandom (persistent) component of the in-equation error (uigt). Suppose, for 
example, that the nonrandom error component includes parental education and income. These 
variables are surely correlated with prior achievement and twice-lagged achievement and, more 
generally, achievement measured at any grade level. 
 

Despite the fact that twice-lagged achievement does not satisfy one of the conditions for 
an instrumental variable, IV estimates based on it as an instrumental variable may be useful as a 
check on the EV estimates. As a result, we report EV and IV estimates later in the study. For 
reference, we also report ordinary least squares (OLS) estimates that do not correct for 
measurement error. Finally, we report IV estimates that also control for heteroscedasticity in the 
error term (referred to as the IV-H method). The latter estimates are nearly identical to the IV 
estimates. 
 
Estimation Methods for Large-Scale Datasets 
  
 Our objective is to develop computationally efficient methods of estimating multilevel 
errors in variables (EV) and instrumental variables (IV) models where the number of students 
and districts in the sample is large—over a million student observations at a single grade level.  
This is important because most software packages designed for multilevel models do not offer 
the option to correct for measurement error using either the EV or IV approaches (for a sample 
of any size) and most are not well equipped to handle large datasets. 
 
 They key to efficient estimation of multilevel models with large data sets is to estimate 
each level equation in stages. This approach is a bit difficult to implement with small to modestly 
sized data sets, so many software packages (such as HLM) estimate all level equations jointly, an 
approach that is also difficult to implement. It turns out, perhaps surprisingly, that most of the 
difficulties posed by the multi-stage estimation strategy disappear with very large data sets. In 
contrast, the joint estimation strategy becomes harder to implement as the sample size increases. 
 
 Let’s begin by developing the multistage approach, given the assumption that there is no 
measurement error. This assumption will subsequently be relaxed.   
 
Level-one model with no measurement error. To simplify the presentation, we focus on the level-
one (student-level) equation for a single grade (2nd grade) and year. This equation, with bias 
parameters added to capture bias due to weak regressors, is listed above—equation (11). To 
simplify the analysis, it is rewritten below in a different form: 
 
 2 1ij i ij j ijY Y Xγ β α ε′= + + +  (20) 
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where the multilevel structure of the data is explicitly recognized by including a district subscript 
j and a student-within-district subscript i  and the grade and year subscripts are dropped for 
convenience. In this equation, the school district parameter jα can be treated as a fixed effect and 
hence differenced out of the equation (Greene, 2000; Hsiao, 1986). To implement this, take the 
school district mean of (20): 
 
 2. 1. . .j j j j jY Y Xγ β α ε′= + + +  (21) 
 
where the bar over a variable designates the variable as a district mean and the dot in place of the 
i  subscript indicates that the mean is computed over students in each district j. Subtracting (21) 
from (20) sweeps away the fixed effect jα : 
 
 2 2. 1 1. . .( ) ( ) ( ) ( )ij j ij j ij j ij jY Y Y Y X Xγ β ε ε′− = − + − + − . (22) 
 
This equation can be estimated quite easily even if the number of districts is large. The variables 
in parentheses are constructed by computing district means and then subtracting them from the 
student-level regressors. This method is referred to as the “deviations from group means” 
approach.11 
 
 Given estimates of the slope parameters γ̂  and β̂ , estimates of the district fixed effects 
and the precision and covariance of these effects can be computed as: 
 

 

2. 1. .

2

. .

. .
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=
− −

 (23) 

 
where 2σ̂  is an estimate of the variance of the student-level error, nj  is the number of students in 
district j, N∑  is the variance-covariance matrix of the estimated vector of slope coefficients 

ˆˆ ˆ[ , ]µ α β′ ′≡ , and . 1. .[ , ]j j jZ Y X′ ′= . 
 

Note that the precision matrix N∑  depends on N. Indeed, as N increases, the matrix 
converges to a matrix of zeros. Hence, with large data sets, the precision and covariance of the 
district effects are approximately equal to: 

                                                 
11 The alternative approach to estimating (20) is to include in the model indicator variables for all districts. If the 
number of districts us much larger than 100, this method is either very slow or simply infeasible. The Texas data 
includes about 1000 districts. 
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2ˆˆ Var( | )

ˆ ˆCov( , | , ) 0.

jj j j
j

jk j k j k

n
σω α α

ω α α α α

≡ ≈

≡ ≈
 (24) 

 
It turns out that this fact greatly simplifies estimation of level-two equations, as is discussed 
below. 
 
Level-two model for a given grade. Given estimates of school district effects, the parameters of 
the level-two model—equation (8)—can be estimated using weighted least squares (WLS).  
Weighting is required for efficient estimation because, as is demonstrated below, the variance of 
the error in the stage-two equation is not constant. To obtain a level-two equation defined in 
terms of the estimated district effect (rather than the true (unknown) district effect), it is 
necessary to explicitly allow for the error in estimating this effect: 
 
 ˆ jgt jgt jgtα α ν= +  (25) 
 
where jgtν  is the error in estimation. The stage-two equation for a given grade is then given by: 
 

 
ˆ jt jt jt jt

jt jt

W r
W f

α δ ν
δ

= + +

= +
 (26) 

 
where the error term fjt  is composed of two parts: the in-equation error rjt, assumed to have 
constant variance (homoscedastic), and the error in estimation νjt. As indicated in (23), the error 
component νjt  is not, in general, independent and identically distributed (IID). 
 
 Despite the absence of IID errors, unbiased estimates of the parameters of this equation 
could be obtained using ordinary least squares (OLS). In small and medium-sized data sets these 
estimates would be inefficient and the reported standard errors could be incorrect. This problem 
could, in principal, be addressed by estimating the model using generalized least squares (GLS), 
but with large data sets this approach would be difficult if not impossible to implement. As 
indicated in (24), however, the dependence between estimation errors vanishes in large data sets.  
Thus, in large data sets it is only necessary to address the fact that the variance of the error in 
estimating ˆ jtα (νjt ) is not constant.12 This can be done quite easily, using weighted least squares 
(WLS). 
 
 To implement WLS, we first estimate (26) using OLS. Second, we compute the variance 
of fjt using the estimated residuals from this regression. Third, we estimate a weighted regression 
where the weighted is equal to the inverse of the estimated variance of the residual fjt. In large 
samples, the formula for this variance is equal to: 
 
                                                 
12 In fact, in data sets where the number of students in each district is large (nj is large), the variance of νjt 
approaches zero, thereby eliminating the heteroscedasticity problem. In Texas, districts vary greatly in size, so we 
address the problem of heteroscedasticity. 
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 2 2
,Var( )fjt jt r jt jts f σ ω≡ = +  (27) 

 
where 2

rσ  is the variance of the level-two in-equation error, assumed to have constant variance, 
and the second term is the variance of the error in estimating ˆ jtα  (which can easily be computed 
using (23)). In order to compute the variance for each level-two observation (with subscript jt), it 
is necessary to estimate 2

rσ . If the number of observations in the level-two model is large (so that 
the slope coefficients δ are precisely estimated), then an estimate of 2

rσ  is given by: 
 
 2 2

, 2 2
ˆˆ ( ) /( )r jt jt jt

j t
f N Kσ ω= − −∑∑  (28) 

where ˆ
jtf is the residual from OLS estimates of (26) and N2 is the number of observations and K2 

is the number of regressors in the level-two model. Hanushek (1974) provides an estimate of 2
rσ  

for the case where the number of observations in the level-two model is not large. In this study 
(with about 6,000 level-two observations in 1,000 districts over six years), formula (28) was 
quite accurate. 
 
Level-two model for multiple grades. One new issue arises with a level-two model that 
encompasses multiple years and grades, namely, the fact that the errors in estimating school 
district effects could be correlated for pairs of effects that are based on the same cohort of 
students, for example, 4th grade students in 1995 and 5th grade students in 1996. However, as 
indicated above, OLS estimates (and WLS estimates) of level-two parameters are unbiased even 
if some or all of the errors are dependent across observations. The problem with dependent errors 
is twofold: the WLS estimates could be inefficient (in the sense of failing to estimate parameters 
with the highest precision) and the reported standard errors could be incorrect. We expect that 
these effects are likely to be small or nonexistent in our situation because the variance and 
covariance of the estimated school district effects are generally quite small because the number 
of students in most districts is quite large (obviously much larger than the number of students per 
school). Furthermore, in the multiple-grade level-two model, most of the pairs of effects are 
based on different cohorts and thus are uncorrelated. This could be a greater problem if the data 
for a study were based on a single cohort, but that is not the case here. 
 
Level-one model with measurement error. In this section, we discuss how to control for 
measurement error if the level-one model is estimated using the “deviations from group means” 
approach advocated above. As indicated in equation (22), the pretest variable, expressed as a 
“deviations” variable, is equal to 1 1.( )ijt jtY Y− . The average variance of the measurement error 
component of this variable is therefore equal to: 
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where 2
vijtσ  is the variance of measurement error for student i  in year t (in a given grade). This 

average variance can be computed quite simply given externally provided information on the 
variance of test measurement error for each student. The average variance is then used as an 
input to the EV method to correct for measurement error. Note that centering the pretest variable 
on the district mean reduces the average measurement error variance only slightly. 
 
 In the next section, we consider two alternative approaches for measuring variance of test 
measurement error for each student. 
 

Exact Finite Sample and Asymptotic Methods for Estimating the Measurement Error 
Characteristics of the Rasch Scale and the Texas Learning Index 

 
 We considered two alternative methods for estimating the measurement error 
characteristics of the Rasch scale and the Texas Learning Index. Our ultimate objective was to 
compute the average variance of measurement error as discussed in the previous section. It is 
important to obtain accurate measures of measurement error variances because incorrect (biased) 
values of these variances will yield biased EV estimates of school district effects (and all other 
parameters). The first section reviews the most commonly used method for computing 
measurement error variances, the maximum likelihood approach. There are two potential 
problems with this approach. First, since maximum likelihood estimates of Rasch ability 
parameters are technically undefined for scores at the absolute extremes (perfect and zero-correct 
scores), the theory provides no suitable estimates of precision for the Rasch values that are 
assigned to these scores. Second, the maximum likelihood method yields estimates of ability and 
their precision that are consistent but not unbiased; that is, the estimates converge to the true 
values as the number of test items approaches infinity. Given that the number of test items on 
most, if not all, tests is relatively small (typically no more than 50 items), these estimates may 
exhibit significant bias, particularly at the extremes of the distribution. In the second section, we 
present an alternative method of computing error variances based on exact finite sample 
methods. This method yields values of error variances that are unbiased even when applied to 
tests with very few test items. We find that the finite sample approach produces much better 
estimates of error variances, particularly at the extremes. Finally, we show how to use the finite 
sample approach to compute error variances for the Texas Learning Index. 
 
Maximum Likelihood Estimation of Achievement and Its Precision in the Rasch Model 
 
 Given estimates of the item difficulties for an assessment, maximum likelihood (ML) 
estimates of ability can be computed using equation (2). The asymptotic sampling variance 
(precision) of the maximum likelihood estimator is given by the inverse of the information 
matrix; that is 
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where the item probabilities are defined in (6) (Lord, 1980).13 Although the variance is defined in 
terms of the true θ, this value is unknown. Thus, it is customary to evaluate (30) at the estimated 
value of θ. 
 
 One of the problems with the ML estimator is that it is undefined for perfect and zero-
correct scores. (Technically the ML estimates associated with perfect and zero-correct raw scores 
are positive and negative infinity, respectively.) As a result, it is customary to assign arbitrary 
upper and lower bound values to the extreme scores. One commonly used ad hoc method of 
generating bounds is to compute the ML estimates associated with raw scores of (n – ½) and ½, 
respectively. The variance of these estimates is then computed using (30). One apparent problem 
with this approach is that it produces estimates of error variances that are enormous (see below 
for specific estimates). A second (possible) problem with the ML estimator is that it yields 
estimates of achievement and precision that are consistent but not unbiased. Given that the 
number of test items on most, if not all, tests is relatively small (typically no more than 50 
items), these estimates may exhibit significant bias, particularly at the extremes of the 
distribution. In the next section we present an alternative method of computing error variances 
based on exact finite sample methods. 
 
Exact Finite Sample Estimation of Precision in the Rasch Model 
 
 In our analysis, we developed formulas for computing the exact finite sample formulas of 
the sampling variance for the ML estimator of Rasch achievement. As is the case with the 
asymptotic sampling variance, the formulas developed below are a function of the true 
(unknown) achievement parameter θ. The key to this approach is that the formulas are defined as 
the summation over the raw (number right) score, a sufficient statistic in the Rasch model (as 
opposed to the summation over items—as in (3)). As indicated in the next section, this approach 
also works for computing the sampling variance of the TLI, since this scale is also a function of 
the raw score—see equations (1) and (5). 
 
 We are interested in the formulas for the conditional mean and variance (given θ) of a 
scaling function S(r) of the raw score r. In our application, the scaling functions yield the Rasch 
scale and TLI, respectively. These formulas (Kolen, Zeng, & Hanson (1996) and Lee, Brennan, 
and Kolen (2000) are given by: 
 

 
0

Conditional Mean: ( ) ( ) ( ) ( )
r n

rt
r

ES S rµ θ θ π θ
=

=
≡ =∑  (31) 

  

                                                 
13 The precision formulas considered in this section all neglect possible uncertainty due to imprecision in the item 
parameters. This is a reasonable assumption if the item parameters are estimated from a large sample of individuals 
(as is the case in this study). 
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where ( )rtπ θ equals the probability of obtaining a raw score of r in year t (on the test form 
administered in that year). Lord and Wingersky (1984) and Kolen, Zeng, and Hanson (1996) 
provide a clever recursion formula for computing these probabilities (given the item probabilities 
defined in (6)).14 
 
 To obtain the desired conditional mean and variance of the Rasch ability parameter, the 
above formulas are evaluated using the scaling function that maps the raw score to the Rasch 
ability parameter—equation (2). (The results below are reported using the Rasch scale, a linear 
transformation of the underlying Rasch ability parameter—see equation (4).) Let’s focus first on 
the conditional mean. As indicated in Figure 8.6, the mean of the Rasch scale is very close to the 
true value except at the extremes. At the top of the distribution, the Rasch scale is biased 
downward. Similarly, it is biased upward at the low end.15 This indicates that the Rasch scale is 
approximately unbiased over most of the distribution of scores. Nonetheless, since the 
distribution of test scores is concentrated on the high side of the distribution (which means that 
the TAAS tests are relatively easy for the student population—see Figures 8.2 to 8.5), the Rasch 
scale appears to be slightly biased against high achievers. Moreover, due to the shift in the test 
score distributions over time, this bias is likely to increase over time. 
 
 Now, let’s focus on the finite sample and asymptotic approaches to computing the 
magnitude of measurement error of the Rasch scale. Figure 8.7 reports the standard error of 
measurement (SEM) on the 3rd grade test in 1994 and 2000. (The results for other grades and 
years were similar and thus are not reported.) As indicated, the SEM profile computed using the 
asymptotic formula exhibits the typical U-shaped pattern reported by all test developers that 
score their tests using Item Response Theory models. In our case, the SEMs at the high and low 
extremes of the distribution are more than four times the minimum SEM. In contrast, the SEM 
profile computed using the finite sample formula exhibits an M-shaped pattern. Moreover, the 
level of measurement error at the extremes is only slightly higher than the minimum value.  
Interestingly, the asymptotic SEM is a bit too low near the center of the distribution. 
 

The overall differences between the two methods of computing the measurement error 
variance of the Rasch mathematics scale are summarized in Table 8.7. The table reports the 

                                                 
14 These formulas, as well as the ML formulas discussed above, assume that the assumptions of the Rasch model are 
valid. The assumption of local independence (Lord, 1980) is particularly important since it is equivalent to an 
assumption that the test measures a unidimensional achievement construct. 
15 These effects at the extremes are inevitable. Given that tests have a finite number of items, there is always a 
minimum and maximum test score. As a true score rises, it is increasingly likely that a test score will bump into the 
test ceiling. Similarly, as a true score falls, it is increasingly likely that a test score will crash into the test floor.  
These effects can be avoided if a test includes items that are well matched (at the bottom, in the middle, and at the 
top) to the abilities of the sample being tested. 
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Figure 8.6. The conditional mean of the estimated Rasch scale in grade 3 by year.
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Figure 8.7. Rasch scale finite sample and asymptotic standard error of measurement in grade 3 
by year. 
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average error variance by grade and year for the two methods (and the associated sample sizes).16  
Note that in all cases the asymptotic approach exaggerates the level of measurement, in some 
cases by almost 50%. Note also that the level of measurement error is highest in the early grades.  
The bottom line is that the traditional approach based on the ML estimator of the asymptotic 
sampling variance works quite poorly. We strongly recommend the finite sample approach. 

 
Exact Finite Sample Estimation of the Precision of the TLI 
 
 It is straightforward to apply the finite sample approach—formula (32)—to compute the 
sampling variance of the TLI. The relevant scaling function is equal to: 
 
 { }1

94( ) Round T C [ ( )]tS r C r− =    (33) 

 
where the relevant functions are defined in equations (1), (2), and (5). Note that the scaling 
function explicitly allows for error due to the fact that the TLI is rounded to an integer value.  
This scaling function applies to both the base year (1994) and other years. In the base year, 
however, the interior part of the function (that is, 1

94C [ ( )]tC r− ) simplifies to the raw score r. 
 
 Using the finite sample approach, the SEM profile for the TLI is graphed in Figure 8.8 
for 3rd grade in 1994 and 2000. In contrast to results obtained with the Rasch scale, the minimum 
error variance is associated with the high and low test scores (the perfect and zero-correct 
scores). As in the case of the Rasch model, the computed error variances for the TLI are used to 
obtain EV estimates of the TLI achievement model. 

 
In the remainder of this study, we present our empirical findings. The next section briefly 

describes the Texas data used in the study. 
 
  

                                                 
16 The average variance reported in the table is equal to the average of the computed individual-specific variances.  
As indicated in the text, the formulas for individual variances are theoretically defined in terms of the true score.  
Since this score is unknown, however, we follow the practice of evaluating the formulas at the estimated score. It is 
possible that the average variance computed in this way differs from the average variance based on the true 
individual-specific variances. If so, then the measurement error corrections based on these computed variances could 
be faulty. To evaluate this possibility, we conducted several Monte Carlo simulations to determine whether the 
computed average variance differs from the true average variance. The simulations indicated that the two average 
variances were very close. 
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Figure 8.8. The standard error of measurement of the Texas Learning Index (TLI) in grade 3 by 
year. 
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Table 8.7 
Average Measurement Error Variance by Method, Grade, and Year 
 
 

Average Finite Sample Measurement Error Variance by Grade and 
Year 

 3rd 4th 5th 6th 7th 
1994 36.84 28.66 27.91 25.22 25.42 
1995 41.97 29.98 33.16 22.97 24.18 
1996 43.74 33.50 31.59 28.77 27.05 
1997 46.24 35.47 33.46 31.20 27.32 
1998 46.41 38.99 37.65 33.78 28.49 
1999 49.81 39.02 40.61 37.16 42.52 

      

Average Asymptotic Measurement Error Variance by Grade and 
Year 

 3rd 4th 5th 6th 7th 
1994 39.22 31.76 29.42 26.62 26.18 
1995 49.77 37.58 41.91 25.68 26.35 
1996 60.09 48.18 39.59 34.69 31.78 
1997 69.08 49.21 47.61 41.88 29.33 
1998 56.86 55.28 53.30 41.90 32.94 
1999 64.84 57.01 53.52 52.46 50.46 

      
Sample Size (Data Used in Achievement Model) 

 3rd 4th 5th 6th 7th 
1994 195851 196677 200428 203956 198652 
1995 195602 203434 202551 207982 206547 
1996 196328 204943 212387 213514 213692 
1997 202298 211026 217953 228390 222799 
1998 200186 209899 218170 228349 228496 
1999 201576 209523 219885 230078 230756 
Total 1191841 1235502 1271374 1312269 1300942

      
Average Measurement Error Variance by Grade (Pooled Across 

Years) 
 3rd 4th 5th 6th 7th 
Asymptotic 56.75 46.70 44.49 37.63 33.16 
Finite Sample 44.21 34.36 34.18 30.06 29.39 
Ratio 1.28 1.36 1.30 1.25 1.13 
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Data 
 

 In this section, we briefly consider the student-level data and the district-level data used 
in the study. The most notable characteristic of the Texas data set is that it is huge: over 10 
million student-level observations and a thousand school districts. Student data is available for 
seven different years, 1994-2000, and six different grades, 3-8. In each grade and year there are 
approximately 220,000 to 260,000 student observations. Thus, there is more than enough data to 
support separate analyses by grade and year, as well as analyses pooled across years at a given 
grade level. All public school districts are included in the database, as are all public school 
students who took the mathematics part of the Texas Assessment of Academic Skills (TAAS).   
 

The TAAS is administered in the late spring of each school year. As previously indicated, 
TAAS results are reported on a scale developed for the Texas Education Agency (TEA), the 
Texas Learning Index (TLI). Extensive information on the TAAS and the TLI is provided at their 
website (www.tea.state.tx.us/student.assessment/). TLI data was provided to us by TEA. We 
constructed the Rasch scale scores that underlie the TLI in order to be able to compare the two 
different ways of scaling the test scores. As already indicated, information on student 
characteristics is rather thin.  Included in the data are measures of race/ethnicity (Black, 
Hispanic, White, other, and mixed reporting of ethnicity over time), gender (male, female), and 
income status/indicator of economic disadvantage (whether a student participated in free lunch or 
not). 

 
Tables 8.1 to 8.6 (see above) provide summary information on the student test scores and  

demographic characteristics by grade and year. The tables report mean TLI scores and associated 
sample sizes as computed from our database and as reported in the TEA website. In all cases the 
means are close, but not exactly the same. The differences are probably due to differences in the 
samples used to estimate the means. In general, the samples used in our analyses appear to be 
somewhat smaller than the samples used to compute the state statistics. This is probably due to 
the fact that we imposed stricter criteria for including observations in the analysis sample than 
the state uses.17 
 
 As discussed previously, Tables 8.1 to 8.6 tell a story of rising test scores over time at all 
grade levels—both with respect to the Texas Learning Index (TLI) and the Rasch scale. The 
details give quite a different picture, however. In 3rd grade, for example, the average TLI 
increased from 69.78 in 1994 to 78.48 in 2000, an increase of 8.70. Over that period, the spread 
of the TLI, as measured by the standard deviation, declined from 15.33 to 12.70. Over the same 
period, the average Rasch scale increased from 69.78 to 80.65, an increase of 10.87, and the 
standard deviation also increased, from 15.33 to 16.69. This is a striking difference. It is due to 
the fact that the Rasch scale is more sensitive to growth at the high end of the achievement scale 
than the TLI. 
 
 In addition to information on test scores, Tables 8.1 to 8.6 report the fraction of students 
by demographic group. Note that the fraction of Hispanic students and the fraction of students 
who are disadvantaged increased significantly over time at all grade levels. For example, in 3rd 
                                                 
17 We eliminated student observations with missing demographic information, missing or duplicative student 
identifiers, and inconsistent grade enrollment data.  

http://www.tea.state.tx.us/student.assessment/
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grade in 1994, 28.6% of the students were Hispanic. By 2000, Hispanic representation had 
increased to 35.9%. Similarly, the proportion of disadvantaged students in 3rd grade increased 
from 42.0 percent in 1994 to 50.4 percent in 2000. These trends may reflect underlying 
demographic changes in the Texas school-aged population, or they may indicate that the system 
did a better job of testing Hispanic and disadvantaged students in later years. 
 
 In order to explore these possibilities, we have plotted data on the number of students 
tested for the three largest racial/ethnic groups in Texas (White, Hispanic, and Black) and for 
disadvantaged and non-disadvantaged students by year and cohort (Figures 8.9 to 8.13). Cohorts 
are identified by the year in which the students attended 3rd grade. Twelve different cohorts are 
represented (1989 to 2000). As indicated in the graphs, the number of Hispanic students tested 
varied enormously over time and across cohorts. In general, the number of students tested 
increased substantially over time (equivalently, over grades) within each cohort. For example, 
the number of Hispanic students tested in the 1995 cohort increased from about 63,000 students 
in 1995 (3rd grade) to 90,000 students in 2000 (8th grade). In contrast, the number of Black 
students tested varied minimally over time and across cohorts. The number of White students 
tested varied somewhat, but with no strong overall trend.   
 
 Given the striking differences in the testing patterns of Hispanic and non-Hispanic and 
disadvantaged and non-disadvantaged students, it may be useful to examine the above data using 
a formal model of the incidence of testing. Define Ngt as the number of students tested in grade g 
and year t for a given demographic group; Egt  as the number of students enrolled in grade g and 
year t for a given demographic group; and Fgt  as the fraction of enrolled students tested in grade 
g and year t. Then, the number of students tested is by definition equal to gt gt gtN E F= ⋅ . Since 
we do not have information on student enrollments (only those tested), we cannot estimate 
separate models of Egt and Fgt. As a result, the two models must be combined to obtain an overall 
model of the number of students tested. Since the two components of Ngt  interact 
multiplicatively, it is convenient to specify the enrollment and fraction-tested models as semi-log 
models.18 
 

We suppose that student enrollment is determined by the size of the corresponding cohort 
c (where, as above, cohort is defined by the year in which a student attended 3rd grade) and 
possibly by changes in enrollment over time due to migration in and out of the state. A semi-log 
model of student enrollment is given by: 
 
 1exp( )gt c t gtE vδ φ= + +  (34) 
 
where δc captures the size of cohort c, φt captures possible changes in enrollment over time, and 
ν1gt is an error component. We suppose that the fraction of students tested may vary 
systematically due to possible differences in testing policies over time and across grades. 

                                                 
18 Since fraction tested is the outcome of individual events (tested/not tested), Fgt  could alternatively be modeled as 
the average of individual probabilities (using, for example, probit or logit models of the probability that an 
individual is tested). This approach is less convenient than the one presented in the text because the resulting models 
are highly nonlinear. 
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Figure 8.9. Number of White students tested by cohort and year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.10. Number of Hispanic students tested by cohort and year.



Figure 8.11. Number of Black students tested by cohort and year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.12. Number of nondisadvantaged students tested by cohort and year.
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Figure 8.13. Number of disadvantaged students tested by cohort and year. 
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A semi-log model of this outcome is given by: 
 
 2exp( )gt t g gtF vα β= + +  (35) 
 
where αt is an effect parameter for year t, β is an effect parameter for grade g, and ν2gt is an error 
component. Combining the two models and taking the log of both sides of the equation yields a 
standard semi-log model of the number of students tested: 
 
 ln ( )gt t t g c gtN vα φ β δ= + + + +  (36) 
 
where 1 2gt gt gtv v v= + .19 One immediate consequence of defining the model in terms of students 
tested (rather than the components Egt and Fgt) is that the year-specific parameters αt and φt 
cannot be separately estimated. (Only their sum can be estimated.) If we assume that migration 
in and out of the state is relatively small, then the estimated year-specific parameter may largely 

                                                 
19 Some of the parameter symbols used in the above model are also used elsewhere in this chapter. The symbols 
mean different things in the different models. 
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reflect αt. In any case, to simplify our notation, we will drop φt from the model. As a result, αt 
should be interpreted as including year effects with respect to enrollment and fraction tested. 
 

Apart from the identification problem discussed above, there is a larger identification 
problem that flows from the fact that cohort, year, and grade are fully interrelated. In fact, a 
student’s cohort is completely defined given his or her year and grade: ( 3)c t g= − − . This 
means that the parameters in (36) are not separately identified.20 To develop a better 
understanding of what exactly can be estimated, let’s consider a linear model defined in terms of 
the regressors year (t-1994), grade (g-3), and cohort (c-1989): 
 
 ln ( 1994) ( 3) ( 1989)gt gtN t g c vµ α β δ= + − + − + − +  (37) 
 
where µ is an intercept and α, β, and δ have been redefined as slope parameters rather than as 
fixed effects.21 To obtain an estimable model, it is necessary to eliminate one of the variables 
from the model. We eliminate g by substituting in the identity 3g t c= − + , which yields: 
 
 ln ( 5 ) ( )( 1994) ( )( 1989)gt gtN t c vµ β α β δ β= + + + − + − − + . (38) 
 
This specification indicates that the regression parameter on time t captures the combined effects 
of year and grade (α-β). The regression parameter on cohort c captures the cohort effect minus 
the grade effect (δ-β). Estimates of this model (for different demographic groups) are discussed 
below. 
 
A More General Model 
 
  The above linear model is useful in that it summarizes patterns over time and across 
cohorts with a limited number of parameters. In this section, in order to follow a linear trend, we 
consider a more general model that does not restrict changes over time, grades, and cohorts. 
Although we do not present estimates from the general model in this study, we describe it below 
since it poses some interesting analytic problems and may be useful in subsequent research. 
Readers interested in our empirical results may skip this section. 
 
 To obtain an estimable version of the general model (see equation (36)), we again need to 
eliminate a single variable from the model. Before we do this, however, it is helpful to rewrite 
(36) in the following (equivalent) form: 
 

 
95 95 96 96 97 97 98 98 99 99 00 00

4 4 5 5 6 6 7 7 8 8

90 90 91 91 00 00

ln

...

N T T T T T T
G G G G G

C C C v

µ α α α α α α
β β β β β

δ δ δ

= + + + + + +
+ + + + +

+ + + + +
 (39) 

 
                                                 
20 These parameters cannot be estimated given data on the number of students tested. They could be estimated given 
data on enrollments and the fraction of students tested. 
21 The regressors are expressed as the deviation from the base period (year = 1994, grade = 3, and cohort = 1989) so 
that the intercept can be interpreted as the predicted log of the number of students tested in the base period. 
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where the Tt, Gg, and Cc  are indicator variables and the subscripts gt  have been dropped from 
the model to simplify the notation.22 To obtain an estimable model, we eliminate G4  by 
substituting the following identity: 
 

 4 95 96 97 98 99 00

5 6 7 8 90 91 92 99 00

5 1 2 3 4 5 6
2 3 4 5 1 2 3 ... 10 11 .

G Y Y Y Y Y Y
G G G G C C C C C

= + + + + + +
− − − − − − − + − −

 (40) 

 
This yields the following model: 
 

 

( )

4 95 4 95 96 4 96

97 4 97 98 4 98 99 4 99 00 4 00

5 4 5 6 4 6 7 4 7 8 4 8

90 4 90 91 4 91 99 4 99 00 4 00

ln ( 5 ) ( ) ( 2 )
( 3 ) ( 4 ) ( 5 ) ( 6 )

( 2 ) ( 3 ) ( 4 ) ( 5 )
( ) ( 2 ) ... ( 10 ) 11 .

N T T
T T T T
G G G G

C C C C v

µ β α β α β
α β α β α β α β

β β β β β β β β
δ β δ β δ β δ β

= + + + + +
+ + + + + + + +

+ − + − + − + −
+ − + − + + − + − +

 (41) 

 
This somewhat complicated looking equation is, in fact, very similar to the linear model 
considered above in that the year and cohort parameters are defined relative to a grade-level 
parameter. In the linear model, we add and subtract ( 1994)tβ −  and ( 1989)cδ − , respectively 
(where the slope parameter β is assumed to be the same at all grade levels). In the more general 
model, we add and subtract 4 ( 1994)tβ − and 4 ( 1989)cβ − , respectively. The year and cohort 
parameters are measured relative to the grade parameter in grade 4. In the more general model, 
the included grade parameters are also measured relative to β4. 
 
 The general model can also be written in a way that more directly highlights its link with 
the linear model: 
 

 

( )4 95 4 90 4

96 95 96 97 95 97 98 95 98

99 95 99 00 95 00

5 4 5 6 4 6 7 4 7 8 4 8

91 90 91 92 90 92 99 90

ln ( 5 ) ( )( 1994) ( 1989)
( 2 ) ( 3 ) ( 4 )

( 5 ) ( 6 )
( 2 ) ( 3 ) ( 4 ) ( 5 )

( 2 ) ( 3 ) ... ( 10

N t c
T T T

T T
G G G G

C C

µ β α β δ β
α α α α α α

α α α α
β β β β β β β β

δ δ δ δ δ δ

= + + + − + − −
+ − + − + −

+ − + −
+ − + − + − + −

+ − + − + + − 99 00 90 00) ( 11 ) .C C vδ δ+ − +

 (42) 

 
The first line of this equation is almost identical to the linear model. In (42), however, the slope 
coefficients are equal to effect (slope) parameters for the base periods (year = 1995, grade = 3, 
and cohort = 1989). All of the remaining parameters capture the extent to which the number of 
students tested at time t, grade g, and cohort c departs from the slope trajectories (with respect to 
time, grade, and cohort) in the base year. Model specifications (41) and (42) are fully equivalent 
ways of capturing the effects of year, grade, and cohort on the number of students tested.23 
 
                                                 
22 The parameters α94, β3, and δ89 have implicitly been absorbed into the intercept. The parameters in the model 
should be understood to capture the effect of a given year, grade, or cohort relative to the omitted group: year = 
1994, grade = 3, and cohort = 1989. 
23 In fact, given estimates of either model, the parameters of the other model can be derived directly. 



 

 Table 8.8 reports estimates of equation (38) for White, Hispanic, and Black students and 
disadvantaged and nondisadvantaged students. Recall that the coefficient on the time variable 
captures the combined effects of time and grade (α + β) (for a given cohort) and the coefficient 
on the cohort variable captures the cohort effect minus the grade effect (δ - β). For convenience, 
the table also reports the sum of these two coefficients (α + δ). This coefficient captures the 
effects of time and cohort changes on the number of students tested in a given grade.  As 
indicated in the table, the linear models explain more than 75% of the variation (as measured by 
the R2 statistic) in the number of students tested for Hispanic students and for disadvantaged and 
nondisadvantaged students. In contrast, the explanatory power of the model for Blacks is only 
27%, but this doesn’t really matter because there is almost no variation to explain—see Figure 
8.9). 
 
Table 8.8 
Estimates of the Determinants of the Number of Students Tested by Racial/Ethnic Group and 
Disadvantaged Status 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 

    
(Standard errors in parentheses.) 

       
 Parameter Variable White Hispanic Black  
 µ+5β Intercept 11.733 11.237 10.341  
   (0.010) (0.017) (0.012)  
 α+β (t-1994) 0.007 0.075 0.010  
   (0.003) (0.005) (0.004)  
 δ-β (c-1989) -0.010 -0.038 -0.001  

  (0.002) (0.004) (0.003)  
α+δ Derived -0.003 0.037 0.009  

      

R2  0.324 0.831 0.270  
Sample Size 42 42 42  
      

 Parameter Variable 
Non 

Disadvantaged Disadvantaged   
µ+5β Intercept 11.777 11.115   

  (0.013) (0.024)   
α+β (t-1994) 0.022 0.048   

  (0.004) (0.008)   
δ-β (c-1989) -0.033 0.010   

  (0.003) (0.006)   
α+δ Derived -0.011 0.059   

      

R2  0.762 0.773   
Sample Size 42 42   
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 The combined time and grade effects are large for two groups: Hispanic students and 
disadvantaged students. With respect to Hispanic students, the estimates indicate that for a given 
cohort, the number of students tested increased by 7.5% per year, or by 45% over a five-year 
period.  The comparable estimates for disadvantaged students are 4.8% per year and 27% over a 
five-year period. These effects are quite large. They indicate that Texas may have had policies 
and practices in place from 1994 to 2000 that led to systematic undertesting of Hispanic and 
disadvantaged students in earlier as opposed to later grades and nearer the beginning as opposed 
to the end of the period. Some part of the increase in the number of students tested could be due 
to positive net in-migration of students over this period, but we doubt that this could account for 
all of the increase. One of the implications of the above findings is that it would be highly 
problematic to limit models of achievement growth to students with multiple (longitudinal) data 
points over time. A restriction of this type would systematically exclude Hispanic and 
disadvantaged students, since these students were disproportionately likely to be excluded from 
testing in the early grades and years. The models used in this study require that a student have no 
more than two consecutive test scores. 
 
 The coefficient in the fourth row of Table 8.8 (α + δ) captures the effects of time and 
cohort changes on the number of students tested in a given grade. (See also Tables 8.1 to 8.6.)  
As indicated in Table 8.8, this coefficient is large for disadvantaged students (5.9%) and 
Hispanic students (3.7%) and very small for all other groups. This indicates that it could be quite 
misleading to compare average test scores (with respect to any scale, TLI or other) over time at 
given grade levels. Our analysis indicates that the demographic composition of these samples 
changed dramatically from 1994 to 2000. As a result, the models of achievement growth used in 
this study explicitly account for differences in achievement growth associated with demographic 
factors. 
 
 We next report estimates of the determinants of achievement growth in Texas over the 
period 1994-2000. 

 
Estimates of Micro Models of Student Achievement Growth 

 
 In this section, we present estimates of micro (level-one) models of student achievement.  
Macro-model estimates, including estimates of the effectiveness of the Urban Systemic 
Initiative, are presented in the next section. Table 8.9 presents micro-model results for several 
different models. Separate results are reported by: 
 

• Grades: 4-8. 
• Test score scale: Texas Learning Index (TLI) and Rasch scale. 
• Estimation method: 

o OLS: Ordinary least squares. 
o EV1: Errors and variables method based on exact finite sample estimates of the 

error variance. 
o EV2: Errors and variables method based on maximum-likelihood (asymptotic) 

estimates of the error variance. 
o IV: Instrumental variables method with twice-lagged achievement (and the other 

exogenous variables) used as instrumental variables. 
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o IV-H: Instrumental variables (as above) with weighting to control for 
heteroscedasticity in the variance of measurement error. 

 
 

Table 8.9 
The Effects of Prior Achievement and Demographic Characteristics by Grade, Scale Score, and 
Model

4th Grade 
 TLI Rasch Scale 

Variable OLS EV1 OLS EV1 EV2 IV 
IV - H 
Model 

3rd Grade Achievement 0.603 0.698 0.630 0.801 0.868 na na 
 (0.0006) (0.0007) (0.0007) (0.0009) (0.0010)   
Female -0.077 -0.085 -0.046 -0.102 -0.124 na na 
 (0.0146) (0.0148) (0.0205) (0.0210) (0.0214)   
Disadvantaged -1.926 -1.404 -2.991 -1.844 -1.396 na na 
 (0.0211) (0.0214) (0.0296) (0.0306) (0.0313)   
Black -2.172 -1.479 -3.449 -2.011 -1.449 na na 
 (0.0279) (0.0283) (0.0391) (0.0403) (0.0413)   
Hispanic -0.313 0.023 -0.882 -0.104 0.200 na na 
 (0.0242) (0.0244) (0.0338) (0.0347) (0.0355)   
Other Ethnicity 1.496 1.263 3.228 2.577 2.323 na na 
 (0.0623) (0.0629) (0.0872) (0.0893) (0.0912)   
Mixed Report -0.590 -0.314 -1.193 -0.572 -0.329 na na 
 (0.0640) (0.0647) (0.0897) (0.0918) (0.0938)   
        

5th Grade 
 TLI Rasch Scale 

Variable OLS EV1 OLS EV1 EV2 IV 
IV - H 
Model 

4th Grade Achievement 0.680 0.756 0.702 0.847 0.916 0.986 0.987 
 (0.0006) (0.0006) (0.0007) (0.0008) (0.0009) (0.0014) (0.0013) 
Female -0.324 -0.317 -0.334 -0.344 -0.348 -0.418 -0.426 
 (0.0130) (0.0131) (0.0192) (0.0195) (0.0199) (0.0240) (0.0237) 
Disadvantaged -1.256 -0.840 -2.225 -1.207 -0.730 -0.169 -0.150 
 (0.0190) (0.0192) (0.0280) (0.0287) (0.0294) (0.0359) (0.0352) 
Black -1.821 -1.289 -2.842 -1.593 -1.007 -0.165 -0.169 
 (0.0248) (0.0251) (0.0365) (0.0374) (0.0383) (0.0468) (0.0457) 
Hispanic -0.377 -0.156 -0.913 -0.333 -0.061 0.338 0.346 
 (0.0213) (0.0214) (0.0313) (0.0320) (0.0326) (0.0397) (0.0389) 
Other Ethnicity 1.021 0.804 2.572 1.853 1.515 1.141 1.132 
 (0.0522) (0.0526) (0.0768) (0.0783) (0.0799) (0.0992) (0.1007) 
Mixed Report -0.590 -0.390 -1.109 -0.598 -0.359 0.045 0.059 
 (0.0551) (0.0555) (0.0810) (0.0825) (0.0842) (0.0997) (0.0984) 
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Table 8.9 (continued) 
The Effects of Prior Achievement and Demographic Characteristics by Grade, Scale Score, and 
Model

6th Grade 
 TLI Rasch Scale 

Variable OLS EV1 OLS EV1 EV2 IV 
IV - H 
Model 

5th Grade Achievement 0.679 0.753 0.699 0.838 0.891 0.935 0.934 
 (0.0005) (0.0006) (0.0006) (0.0007) (0.0008) (0.0011) (0.0010) 
Female -0.598 -0.573 -0.617 -0.596 -0.588 -0.698 -0.738 
 (0.0119) (0.0120) (0.0173) (0.0176) (0.0179) (0.0216) (0.0212) 
Disadvantaged -1.430 -1.027 -2.398 -1.405 -1.023 -0.721 -0.703 
 (0.0174) (0.0176) (0.0254) (0.0261) (0.0266) (0.0324) (0.0315) 
Black -1.382 -0.851 -2.388 -1.153 -0.678 -0.028 -0.014 
 (0.0226) (0.0229) (0.0329) (0.0338) (0.0345) (0.0420) (0.0403) 
Hispanic -0.684 -0.460 -1.342 -0.748 -0.519 -0.186 -0.171 
 (0.0192) (0.0194) (0.0280) (0.0286) (0.0292) (0.0355) (0.0343) 
Other Ethnicity 1.077 0.861 2.331 1.577 1.287 1.044 1.070 
 (0.0459) (0.0463) (0.0668) (0.0682) (0.0695) (0.0847) (0.0891) 
Mixed Report -0.650 -0.442 -1.197 -0.670 -0.467 -0.217 -0.199 
 (0.0498) (0.0502) (0.0723) (0.0738) (0.0752) (0.0881) (0.0878) 
        

7th Grade 
 TLI Rasch Scale 

Variable OLS EV1 OLS EV1 EV2 IV 
IV - H 
Model 

6th Grade Achievement 0.781 0.859 0.800 0.946 0.991 1.046 1.036 
 (0.0005) (0.0006) (0.0006) (0.0007) (0.0008) (0.0011) (0.0010) 
Female -0.249 -0.183 -0.335 -0.241 -0.212 -0.379 -0.335 
 (0.0120) (0.0121) (0.0171) (0.0175) (0.0177) (0.0216) (0.0207) 
Disadvantaged -1.590 -1.158 -2.434 -1.374 -1.043 -0.679 -0.657 
 (0.0177) (0.0179) (0.0252) (0.0259) (0.0263) (0.0325) (0.0305) 
Black -1.596 -1.065 -2.344 -1.091 -0.701 0.048 0.014 
 (0.0229) (0.0232) (0.0327) (0.0335) (0.0341) (0.0419) (0.0388) 
Hispanic -0.713 -0.406 -1.211 -0.427 -0.182 0.312 0.281 
 (0.0194) (0.0196) (0.0277) (0.0283) (0.0288) (0.0353) (0.0331) 
Other Ethnicity 1.220 0.988 2.961 2.184 1.942 1.805 1.717 
 (0.0453) (0.0457) (0.0646) (0.0660) (0.0670) (0.0829) (0.0881) 
Mixed Report -0.627 -0.399 -0.967 -0.375 -0.191 0.240 0.216 
 (0.0518) (0.0523) (0.0738) (0.0754) (0.0765) (0.0891) (0.0882) 
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Table 8.9 (continued) 
The Effects of Prior Achievement and Demographic Characteristics by Grade, Scale Score, and 
Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The estimates are based on separate models at each grade level, with data pooled (at each grade 
level) across all years: 1995 to 2000.24 However, separate district school effects are included for 
every year. (Tables 8.10 to 8.14 report micro model estimates based on separate models by grade 
and year.) The pooled estimates are based on samples of approximately 1.2 million observations.  
Since the parameter estimates are all made with great precision (small standard errors), we will 
not discuss whether the estimates are statistically significant. They are. Nonetheless, estimates of 
standard errors are reported in parentheses. 
 
 Let’s begin by discussing the estimates of the Rasch model in 5th grade (second panel in 
Table 8.9). In particular, focus on the coefficients on prior achievement and economic 
disadvantage for the alternative-estimation methods, reported below for convenience. 
 

Method of 
Estimation

Pretest Economic 
Disadvantage

OLS 0.702 -2.225 
EV1 0.847 -1.207 
EV2 0.916 -0.730 
IV 0.986 -0.169 
IV-H 0.987 -0.150 

                                                 
24 Since the value-added models used in this study all require pretest data, models cannot be estimated for the first 
year (1994) and for the earliest grade (3rd grade). In addition, the IV and IV-H models require data on twice-lagged 
achievement. These models cannot be estimated for 3rd and 4th grades and for the years 1994 and 1995. 

8th Grade 
 TLI Rasch Scale 

Variable OLS EV1 OLS EV1 EV2 IV 
IV - H 
Model 

7th Grade Achievement 0.753 0.827 0.741 0.862 0.880 0.923 0.928 
 (0.0005) (0.0006) (0.0005) (0.0006) (0.0007) (0.0009) (0.0009) 
Female 0.287 0.345 0.428 0.502 0.514 0.352 0.394 
 (0.0121) (0.0121) (0.0159) (0.0162) (0.0163) (0.0194) (0.0189) 
Disadvantaged -0.979 -0.548 -1.505 -0.597 -0.459 -0.075 -0.061 
 (0.0176) (0.0178) (0.0233) (0.0238) (0.0240) (0.0292) (0.0278) 
Black -1.203 -0.632 -1.878 -0.721 -0.545 0.145 0.157 
 (0.0230) (0.0233) (0.0304) (0.0311) (0.0313) (0.0378) (0.0356) 
Hispanic -0.778 -0.436 -1.236 -0.491 -0.377 0.125 0.105 
 (0.0195) (0.0197) (0.0257) (0.0263) (0.0265) (0.0318) (0.0304) 
Other Ethnicity 0.986 0.747 2.343 1.613 1.502 1.190 1.214 
 (0.0448) (0.0451) (0.0592) (0.0603) (0.0607) (0.0726) (0.0788) 
Mixed Report -0.646 -0.393 -1.029 -0.470 -0.385 -0.035 -0.057 
 (0.0556) (0.0560) (0.0734) (0.0748) (0.0752) (0.0853) (0.0866) 
 



 

Tex
Variable Pooled 1
3rd Grade Achievement 0.70 0
Female -0.09 0
Disadvantaged -1.40 -1
Black -1.48 -1
Hispanic 0.02 -0
Other Ethnicity 1.26 1
Mixed Report -0.31 -0
   

Variable Pooled 1
3rd Grade Achievement 0.80 0
Female -0.10 0
Disadvantaged -1.84 -2
Black -2.01 -2
Hispanic -0.10 -0
Other Ethnicity 2.58 2
Mixed Report -0.57 -0
   
Sample 1191841 195
   

   
Tex

Variable Pooled 1
3rd Grade Achievement 0.60 0
Female -0.08 0
Disadvantaged -1.93 -2
Black -2.17 -2
Hispanic -0.31 -0
Other Ethnicity 1.50 1
Mixed Report -0.59 -0
   

Variable Pooled 1
3rd Grade Achievement 0.63 0
Female -0.05 0
Disadvantaged -2.99 -3
Black -3.45 -3
Hispanic -0.88 -1
Other Ethnicity 3.23 2
Mixed Report -1.19 -1
   
Sample 1191841 195

Table 8.10 
The Effects of Prior Achievement and Demographic Characteristics in 4th Grade by Year and 
Scale Score 
 
EV1 Model 

as Learning Index 
995 1996 1997 1998 1999 2000
.74 0.70 0.67 0.69 0.65 0.73
.05 0.44 0.13 -0.24 -0.51 -0.36
.90 -1.87 -1.66 -1.33 -1.04 -0.85
.92 -1.87 -1.74 -1.17 -1.52 -0.43
.26 -0.22 -0.10 0.09 0.34 0.37
.51 1.54 1.16 1.30 1.28 0.83
.54 -0.44 -0.19 -0.11 -0.30 -0.28

     
Rasch Scale 

995 1996 1997 1998 1999 2000
.85 0.82 0.74 0.77 0.78 0.87
.15 0.56 0.34 -0.25 -0.82 -0.64
.06 -2.22 -2.07 -1.85 -1.53 -1.44
.27 -2.18 -2.27 -1.83 -2.13 -0.96
.50 -0.42 -0.27 -0.12 0.41 0.45
.13 2.96 2.48 2.65 3.11 2.16
.72 -0.77 -0.55 -0.34 -0.30 -0.69

     
851 195602 196328 202298 200186 201576

     
 OLS Model 

     
as Learning Index 
995 1996 1997 1998 1999 2000
.63 0.61 0.60 0.61 0.54 0.60
.04 0.40 0.11 -0.25 -0.46 -0.23
.61 -2.48 -2.08 -1.76 -1.52 -1.39
.90 -2.59 -2.20 -1.67 -2.18 -1.42
.77 -0.59 -0.35 -0.15 0.03 0.01
.78 1.77 1.34 1.50 1.51 1.11
.99 -0.71 -0.34 -0.32 -0.59 -0.68

     
Rasch Scale 

995 1996 1997 1998 1999 2000
.68 0.66 0.60 0.61 0.59 0.64
.15 0.52 0.33 -0.26 -0.66 -0.30
.19 -3.43 -3.11 -2.99 -2.68 -2.68
.75 -3.54 -3.38 -3.07 -3.64 -3.08
.35 -1.21 -0.91 -0.80 -0.40 -0.51
.70 3.59 3.03 3.33 3.76 2.98
.44 -1.36 -0.95 -0.90 -1.01 -1.56

     
851 195602 196328 202298 200186 201576
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EV1 Model 
        

Texas Learning Index 
Variable Pooled 1995 1996 1997 1998 1999 2000
4th Grade Achievement 0.76 0.79 0.79 0.73 0.74 0.72 0.72
Female -0.32 -0.14 -0.08 -0.53 -0.85 0.16 -0.42
Disadvantaged -0.84 -1.43 -0.84 -0.95 -0.73 -0.78 -0.52
Black -1.29 -1.96 -1.81 -1.20 -0.65 -1.62 -0.57
Hispanic -0.16 -0.68 -0.33 -0.08 0.18 -0.04 0.05
Other Ethnicity 0.80 0.83 0.95 0.88 1.25 0.49 0.58
Mixed Report -0.39 -0.82 -0.54 -0.30 -0.05 -0.30 -0.36

        
Rasch Scale 

Variable Pooled 1995 1996 1997 1998 1999 2000
4th Grade Achievement 0.85 0.87 0.85 0.81 0.85 0.86 0.86
Female -0.34 0.00 0.02 -0.56 -1.27 0.49 -0.70
Disadvantaged -1.21 -1.65 -1.06 -1.29 -1.00 -1.35 -0.94
Black -1.59 -2.04 -1.76 -1.59 -0.89 -2.35 -0.87
Hispanic -0.33 -0.93 -0.44 -0.39 0.17 -0.46 0.05
Other Ethnicity 1.85 1.59 1.95 1.60 2.57 1.70 1.62
Mixed Report -0.60 -0.97 -0.75 -0.59 -0.04 -0.55 -0.86
        
Sample 1235502 196677 203434 204943 211026 209899 209523
        

 OLS Model 
        

Texas Learning Index 
Variable Pooled 1995 1996 1997 1998 1999 2000
4th Grade Achievement 0.68 0.71 0.72 0.66 0.67 0.63 0.63
Female -0.32 -0.19 -0.08 -0.52 -0.85 0.15 -0.42
Disadvantaged -1.26 -1.96 -1.35 -1.37 -1.10 -1.16 -0.84
Black -1.82 -2.68 -2.47 -1.66 -1.05 -2.10 -1.04
Hispanic -0.38 -1.02 -0.62 -0.29 0.01 -0.23 -0.10
Other Ethnicity 1.02 1.16 1.18 1.07 1.41 0.71 0.78
Mixed Report -0.59 -1.11 -0.82 -0.47 -0.16 -0.50 -0.54
        

Rasch Scale 
Variable Pooled 1995 1996 1997 1998 1999 2000
4th Grade Achievement 0.70 0.74 0.72 0.68 0.70 0.70 0.68
Female -0.33 -0.08 0.05 -0.52 -1.22 0.49 -0.69
Disadvantaged -2.22 -2.52 -2.02 -2.29 -2.11 -2.44 -2.00
Black -2.84 -3.20 -2.99 -2.67 -2.09 -3.66 -2.35
Hispanic -0.91 -1.52 -1.05 -0.92 -0.38 -1.04 -0.52
Other Ethnicity 2.57 2.30 2.52 2.26 3.25 2.50 2.56
Mixed Report -1.11 -1.45 -1.31 -1.04 -0.44 -1.11 -1.43
        
Sample 1235502 196677 203434 204943 211026 209899 209523

Table 8.11 
The Effects of Prior Achievement and Demographic Characteristics in 5th Grade by Year and 
Scale Score



 

   
Tex

Variable Pooled 19
5th Grade Achievement 0.75 0
Female -0.57 -0
Disadvantaged -1.03 -1
Black -0.85 -1
Hispanic -0.46 -1
Other Ethnicity 0.86 0
Mixed Report -0.44 -1

   

Variable Pooled 19
5th Grade Achievement 0.84 0
Female -0.60 0
Disadvantaged -1.41 -1
Black -1.15 -1
Hispanic -0.75 -1
Other Ethnicity 1.58 1
Mixed Report -0.67 -1
   
Sample 1271374 2004
   

   
Tex

Variable Pooled 19
5th Grade Achievement 0.68 0
Female -0.60 -0
Disadvantaged -1.43 -1
Black -1.38 -2
Hispanic -0.68 -1
Other Ethnicity 1.08 1
Mixed Report -0.65 -1
   

Variable Pooled 19
5th Grade Achievement 0.70 0
Female -0.62 0
Disadvantaged -2.40 -2
Black -2.39 -3
Hispanic -1.34 -2
Other Ethnicity 2.33 1
Mixed Report -1.20 -1
   
Sample 1271374 2004

Table 8.12 
The Effects of Prior Achievement and Demographic Characteristics in 8th Grade by Year and 
Scale Score
EV1 Model 
     

as Learning Index 
95 1996 1997 1998 1999 2000

.77 0.70 0.77 0.76 0.76 0.77

.04 -0.94 -0.76 -0.76 -0.12 -0.83

.26 -1.08 -1.08 -0.82 -1.00 -0.95

.93 -0.84 -0.22 -0.46 -1.32 -0.34

.43 -0.77 0.07 -0.06 -0.52 -0.13

.69 0.93 1.11 1.13 0.52 0.85

.00 -0.60 -0.10 -0.15 -0.57 -0.37
     

Rasch Scale 
95 1996 1997 1998 1999 2000

.88 0.80 0.85 0.82 0.87 0.81

.13 -1.02 -0.92 -0.94 0.58 -1.35

.32 -1.38 -1.55 -1.11 -1.72 -1.36

.87 -1.04 -0.51 -0.51 -2.30 -0.61

.63 -1.03 -0.13 -0.01 -1.49 -0.23

.01 1.63 2.04 2.19 0.92 1.66

.10 -0.74 -0.25 -0.22 -1.12 -0.70
     

28 202551 212387 217953 218170 219885
     

 OLS Model 
     

as Learning Index 
95 1996 1997 1998 1999 2000

.69 0.63 0.70 0.69 0.68 0.69

.07 -0.98 -0.77 -0.79 -0.16 -0.81

.79 -1.54 -1.52 -1.19 -1.34 -1.26

.65 -1.46 -0.81 -0.87 -1.72 -0.80

.80 -1.05 -0.17 -0.23 -0.67 -0.30

.01 1.19 1.34 1.32 0.73 1.01

.35 -0.87 -0.33 -0.29 -0.68 -0.54
     

Rasch Scale 
95 1996 1997 1998 1999 2000

.75 0.68 0.73 0.69 0.71 0.66

.11 -1.07 -0.91 -0.98 0.46 -1.27

.20 -2.32 -2.53 -2.13 -2.79 -2.39

.03 -2.25 -1.78 -1.62 -3.53 -1.99

.28 -1.64 -0.73 -0.54 -2.01 -0.86

.69 2.36 2.75 2.90 1.83 2.45

.71 -1.28 -0.81 -0.69 -1.54 -1.25
     

28 202551 212387 217953 218170 219885
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Table 8.13 
The Effects of Prior Achievement and Demographic Characteristics in 7th Grade by Year and 
Scale Score

EV1 Model 
        

Texas Learning Index 
Variable Pooled 1995 1996 1997 1998 1999 2000
6th Grade Achievement 0.86 0.95 0.99 0.89 0.89 1.08 0.90
Female -0.18 0.75 -0.50 0.34 0.09 -0.26 -1.72
Disadvantaged -1.16 -1.49 -1.01 -1.08 -1.29 -1.79 -1.59
Black -1.07 -2.32 -0.95 -0.84 -1.62 -0.81 -0.02
Hispanic -0.41 -1.77 -0.27 -0.06 -0.95 -0.42 0.88
Other Ethnicity 0.99 1.30 1.25 2.14 1.00 2.63 4.27
Mixed Report -0.40 -1.10 -0.59 -0.27 -0.49 -0.15 0.22

        
Rasch Scale 

Variable Pooled 1995 1996 1997 1998 1999 2000
6th Grade Achievement 0.95 0.85 0.88 0.86 0.84 0.92 0.80
Female -0.24 0.61 -0.52 0.24 -0.03 -0.46 -0.84
Disadvantaged -1.37 -1.68 -0.92 -1.00 -1.10 -1.21 -1.10
Black -1.09 -2.57 -0.90 -0.85 -1.40 -0.46 -0.33
Hispanic -0.43 -1.79 -0.21 -0.09 -0.68 -0.08 0.30
Other Ethnicity 2.18 0.92 0.87 1.28 0.38 0.95 1.60
Mixed Report -0.38 -1.39 -0.53 -0.26 -0.46 -0.07 0.02
        
Sample 1312269 203956 207982 213514 228390 228349 230078
        

 OLS Model 
        

Texas Learning Index 
Variable Pooled 1995 1996 1997 1998 1999 2000
6th Grade Achievement 0.78 0.77 0.80 0.78 0.77 0.83 0.72
Female -0.25 0.50 -0.55 0.13 -0.08 -0.53 -0.87
Disadvantaged -1.59 -2.16 -1.43 -1.47 -1.50 -1.65 -1.44
Black -1.60 -3.28 -1.58 -1.38 -1.84 -0.91 -0.74
Hispanic -0.71 -2.20 -0.63 -0.40 -0.91 -0.34 0.07
Other Ethnicity 1.22 1.24 1.13 1.52 0.59 1.20 1.77
Mixed Report -0.63 -1.73 -0.87 -0.49 -0.65 -0.26 -0.11
        

Rasch Scale 
Variable Pooled 1995 1996 1997 1998 1999 2000
6th Grade Achievement 0.80 0.82 0.86 0.76 0.75 0.88 0.75
Female -0.33 0.61 -0.50 0.15 -0.01 -0.42 -1.70
Disadvantaged -2.43 -2.32 -1.89 -2.11 -2.37 -3.15 -2.75
Black -2.34 -3.53 -2.10 -1.98 -2.76 -2.19 -1.40
Hispanic -1.21 -2.52 -1.05 -0.79 -1.62 -1.26 0.01
Other Ethnicity 2.96 2.01 1.86 2.87 1.78 3.72 5.01
Mixed Report -0.97 -1.72 -1.23 -0.81 -1.04 -0.80 -0.32
        
Sample 1312269 203956 207982 213514 228390 228349 230078
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EV1 Model  
         

Texas Learning Index 
Variable Pooled 1995 1996 1997 1998 1999 2000  
7th Grade Achievement 0.83 0.84 0.87 0.87 0.84 0.79 0.61  
Female 0.35 1.33 0.05 0.49 -0.09 -0.37 0.64  
Disadvantaged -0.55 -1.16 -0.22 -0.39 -0.47 -0.53 -1.08  
Black -0.63 -2.34 -0.44 -0.10 0.01 0.05 -1.41  
Hispanic -0.44 -2.04 -0.02 0.00 -0.34 0.00 -0.56  
Other Ethnicity 0.75 0.63 0.87 1.32 0.71 0.86 0.71  
Mixed Report -0.39 -1.40 -0.21 -0.15 -0.23 -0.13 -0.58  

         
Rasch Scale  

Variable Pooled 1995 1996 1997 1998 1999 2000 
7th Grade Achievement 0.86 0.88 0.89 0.90 0.92 0.87 0.76 
Female 0.50 1.56 -0.11 0.47 0.37 -0.40 1.19 
Disadvantaged -0.60 -0.85 -0.16 -0.38 -0.42 -0.65 -0.96 
Black -0.72 -1.97 -0.45 0.04 0.06 -0.12 -1.47 
Hispanic -0.49 -1.78 0.00 0.14 -0.42 -0.09 -0.59 
Other Ethnicity 1.61 0.89 1.92 2.64 1.87 1.57 1.04 
Mixed Report -0.47 -1.18 -0.27 -0.09 -0.29 -0.27 -0.61 
         
Sample 1300942 198652 206547 213692 222799 228496 230756 
         

 OLS Model  
         

Texas Learning Index 
Variable Pooled 1995 1996 1997 1998 1999 2000  
7th Grade Achievement 0.75 0.76 0.79 0.80 0.77 0.72 0.61 
Female 0.29 1.23 0.01 0.43 -0.16 -0.39 0.64 
Disadvantaged -0.98 -1.65 -0.73 -0.85 -0.90 -0.90 -1.08 
Black -1.20 -3.09 -1.23 -0.70 -0.49 -0.43 -1.41 
Hispanic -0.78 -2.52 -0.51 -0.37 -0.63 -0.27 -0.56 
Other Ethnicity 0.99 0.94 1.18 1.55 0.96 1.02 0.71 
Mixed Report -0.65 -1.78 -0.58 -0.46 -0.44 -0.34 -0.58 
         

Rasch Scale  
Variable Pooled 1995 1996 1997 1998 1999 2000 
7th Grade Achievement 0.74 0.76 0.79 0.79 0.79 0.74 0.64 
Female 0.43 1.44 -0.13 0.41 0.25 -0.44 1.09 
Disadvantaged -1.51 -1.59 -0.94 -1.27 -1.43 -1.64 -1.99 
Black -1.88 -3.12 -1.62 -1.09 -1.09 -1.33 -2.52 
Hispanic -1.24 -2.55 -0.79 -0.62 -1.13 -0.83 -1.24 
Other Ethnicity 2.34 1.56 2.55 3.24 2.70 2.24 1.98 
Mixed Report -1.03 -1.78 -0.83 -0.73 -0.81 -0.85 -1.08 
         
Sample 1300942 198652 206547 213692 222799 228496 230756

Table 8.14 
The Effects of Prior Achievement and Demographic Characteristics in 8th Grade by Year and 
Scale Score 
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The pretest coefficients vary enormously across the five different estimation methods, ranging 
from a low estimate of 0.702 for the OLS model up to 0.987 for the IV-H model. Similarly, the 
estimated effect of economic disadvantage ranges from a high (negative) estimate of -2.225 in 
the OLS model to a low of -0.150 (essentially no effect) in the IV-H model. It is evident that the 
choice of estimation method makes a huge difference. Which estimates should we prefer? The 
choice of estimation method is complicated by two factors. First, student achievement (whether 
measured by the Texas Learning Index or the Rasch scale) is measured with error. Second, the 
Texas dataset (like most datasets based on administrative records) includes only a limited 
number of control variables. 
 

The first factor, if not addressed, causes downward bias in the coefficient on prior 
achievement and bias in the other parameter estimates. Fortunately, the biases due to 
measurement error can be eliminated using the errors-in-variables method (EV), provided that 
(correct) information on the magnitude of the error variance is available.25 Earlier in the paper, 
we demonstrated that the finite-sample approach, in contrast to the traditional asymptotic 
(maximum likelihood) method, yields correct estimates of the measurement error variance. As a 
result, the approach that corrects for measurement error using finite-sample measures of the error 
variance (EV1) should be preferred over the alternative approach (EV2). The latter approach 
over-corrects for measurement error and, as indicated above (and in Table 8.9), produces high 
estimates of the pretest coefficient and low estimates of the coefficient on economic 
disadvantage. 

 
The second factor gives rise to two different problems. One, failure to control for 

persistent individual/family attributes that affect achievement growth is likely to produce upward 
bias in the coefficient on prior achievement (since the omitted individual effects are likely to be 
positively correlated with prior achievement). As a result, EV1 estimates of the coefficient on 
prior achievement should be viewed as upper-bound estimates of the coefficient on prior 
achievement. It is tempting to speculate that the biases caused by measurement error (negative 
bias) and (unmeasured) persistent individual effects (positive bias) cancel each other out. In this 
case, OLS estimates of the coefficient on prior achievement would be unbiased. Unfortunately, 
there is no reason to assume this. I am inclined to believe that the OLS estimates are on the low 
side. If so, we can conclude that the true value of the pretest coefficient in 5th grade lies between 
0.702 (OLS) and 0.847 (EV1). 

 
The second problem with weak control variables is that the (unmeasured) individual 

effects may be correlated with the school district indicators. In other words, the groups of 
students in different districts may differ with respect to unmeasured student/family 
characteristics. If so, estimation methods that yield unbiased pretest coefficients could 
paradoxically yield biased estimates of school district effects (and the effects of educational 
inputs and policies). One possible approach to reducing (or eliminating) this source of bias is to 
allow the pretest variable to serve, in effect, as a proxy for omitted individual effects. This 
suggests (as argued earlier in the paper) that the EV1 method might produce the best estimates of 
school effects (even though it would produce upward-biased estimates of the effects of prior 

                                                 
25 The EV method yields parameter estimates that are consistent (asymptotically unbiased). Given the large size of 
the Texas data set, it is reasonable to assume that the EV estimates fully correct for the biases due to measurement 
error. 
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achievement). The bottom line is that the EV1 estimates are probably most useful if the objective 
of the analysis is to obtain valid (consistent) estimates of school district effects (and the effects of 
educational inputs and policies). Nonetheless, given the uncertainty that arises from having a 
weak set of control variables, we report district-level (level-two) results in the next section based 
on level-one estimates from both the OLS and EV1 approaches. 

 
Finally, it is interesting to note that both models based on instrumental variables (IV and 

IV-H) produce estimates of pretest coefficients that exceed the upper-bound estimates given by 
the EV1 approach. This is evidently due to the fact that twice-lagged achievement is highly 
correlated with the omitted individual effect (and possibly a serially correlated error component) 
and thus is not a valid instrumental variable. The interesting point about these results is that they 
indicate at face value that there is essentially no effect on student achievement growth of being 
economically disadvantaged. This result is a technical artifact of using a model that produces a 
hugely upward-biased pretest coefficient (approximately equal to 1.0). The same result would be 
obtained from a linear growth model (a model that imposes the assumption that the pretest 
coefficient is equal to 1). At all grade levels, our analysis indicates that the upper-bound estimate 
(from the EV1 model) of the pretest coefficient is substantially less than 1 (about 0.85). Hence, 
one important methodological finding of this study is that linear growth models (quite widely 
used) would be inappropriate for the Texas achievement data. 

 
 In light of the above discussion, we will focus below on estimates obtained using the EV1 
and OLS methods. As indicated in Table 8.9, the strongest demographic predictors of 
achievement growth are economic disadvantage and Black status. Both are negatively related to 
achievement growth. For example, with respect to the EV1 estimates for the Rasch scale, the 
effects of economic disadvantage and Black status are equal to -1.2 and -1.6, respectively. These 
effects are somewhat larger based on the OLS estimates. The effects of gender and Hispanic 
status are quite small at all grade levels.  
 

The coefficient estimates should be interpreted as the effect of an explanatory variable on 
grade-to-grade growth in mathematics achievement as measured by the TLI or Rasch scale. An 
example of an explanatory variable is a demographic characteristic such as economic 
disadvantage or the USI program. Thus, a coefficient estimate of one corresponds to one point on 
the TLI or Rasch scale. 
 
 Next, we examine whether the effects of economic disadvantage and race/ethnicity varied 
over time—see Tables 8.10 to 8.14. To facilitate comparison of these effects, coefficient 
estimates based on the Rasch scale and EV1 estimation method are presented in Figures 8.14 (the 
effect of economic disadvantage), 8.15 (the effect of being Black), and 8.16 (the effect of being 
Hispanic).26 Separate estimates are presented for each grade and the average effect (across 
grades) over time (the latter in bold). The effects of economic disadvantage (relative to 
                                                 
26 The regression model results for the Rasch and TLI scales were quite similar. Hence, we report only the results for 
the Rasch scale. This is perhaps a surprising result given that the univariate statistics (see the means and standard 
deviations reported in Tables 8.1 to 8.5) for the two scales exhibited very different patterns. This difference is due to 
the fact that the regression models control for prior achievement and thus implicitly adjust for differences in the 
shape of the achievement growth curves produced by the Rasch and TLI scales. The TLI scale exhibits greater 
curvature over time than the Rasch scale. As a result, the posttest-on-pretest coefficients tend to be smaller in the 
models based on the TLI scale than the Rasch scale. 
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nondisadvantaged students) were relatively constant over time in grades 5, 6, and 7. This also 
was true for the average across all grades. The effect for the average hovered around –1.25 from 
1996 to 2000. This indicates that grade-to-grade growth in mathematics achievement was, on the 
average, 1.25 points lower for economically disadvantaged students as compared to 
economically advantaged students. What is interesting are the differences in the change between 
4th grade and 8th grade over time; the 4th grade effects decreased slightly (became less negative) 
and the 8th grade effects decreased from 1995 to 1996 and then gradually increased (became 
more negative) over the next four years. In general, as the number of disadvantaged students 
increased (Figure 8.13), the effect on achievement remained negative and constant over time, 
except in the 4th grade and 8th grade. 
 

In contrast, the effects of Black status (relative to White status) varied somewhat by 
grade and over time (see Figure 8.15 for clarification). The average effect of Black status (across 
grades) improved from about –2.0 to –1.0 from 1995 to 2000. In the intervening years, the 
effects differed quite a bit across grades, with a relatively large negative effect (about –2.2) in the 
4th grade from 1995 to 1999 and no effect in the 8th grade from 1997 to 1999. Overall, the 
number of Black students tested in Texas remained constant (Figure 8.11). Black students 
performed lower than White students in the lower grades and were on par with White students in 
8th grade for three years. 

 
Figure 8.14. The effect of being economically disadvantaged over time by grade, Rasch scale 
(EV1 Estimates). 
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Figure 8.15. The effect of being African American over time by grade, Rasch scale (EV1 
Estimates) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 8.16. The effect of being Hispanic over time by grade, Rasch scale (EV1 Estimates). 
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Although the effects of Hispanic status (relative to White status) were generally quite 
small—typically, between 0.0 and –0.5—at all grades and in all years, the 4th grade Hispanic 
students had a more positive effect when compared to students in the other grades in 1999 and 
2000. This is noticeably different from the disadvantaged and Black analyses. The first year 
(1995) was somewhat of an exception: the effects varied from –0.5 in 4th grade to –1.8 in 8th 
grade. Even though the number of Hispanic students tested increased significantly over time 
(Figure 8.10), the average performance of Hispanic students from 1997 to 2000 was nearly 
comparable to White students. The adjusted gain scores by 4th grade Hispanic students in 1999 
and 2000 actually were slightly higher than those of 4th grade White students. Looking across the 
complete set of coefficient estimates by year, it appears that the coefficients are reasonably stable 
over time. Nonetheless, there was a general rise in performance by Black and Hispanic students 
after 1995. The (negative) Black effect declined by about 50%  from 1995 to 2000, and the 
small, but negative Hispanic effect (averaged across all grades) essentially vanished by 2000. 
However, there was little improvement by economically disadvantaged students over the six 
years analyzed. Because there was some stability in results over time, it is reasonable to focus on 
the pooled (across years) estimates. In the next section, we draw on estimates of school district 
productivity derived from the pooled data to assess the effectiveness of the Urban Systemic 
Initiative (USI). 
 

Estimates of the Effectiveness of the Urban Systemic Initiative 
 

Tables 8.15 to 8.18 present estimates of the effectiveness of the Urban Systemic Initiative 
(USI) based on the level-two model discussed earlier in the paper. Separate USI effect estimates 
are presented based on level-one estimates from the OLS and EV1 approaches and the Rasch and 
TLI scales. The USI effect estimates are reported by grade and year. As indicated in the top 
panel in each table, the standard errors associated with each effect estimate (by grade and year) 
are quite large. This is due to the fact that the number of districts that participated in the USI was 
relatively small. As a result, it is best to interpret the USI estimates as a set rather than focus on 
estimates in any particular grade and year. The separate estimates by grade and years are in 
general not statistically significant.  Nonetheless, it is apparent from inspecting the four tables 
that the USI appears to have contributed modestly to student achievement growth. Moreover, the 
USI effect appears to be have increased over time, from essentially no effect during the initial 
years of the program to modest, positive effects in 1999 and 2000. One interesting result is that 
the USI effect estimates appear to be generally larger in the early rather than later grades. 

 
The above results—small but positive effects at the district level—indicate that it would 

be interesting to investigate the effectiveness of the USI at the school (and possibly teacher) 
level. It is possible that the program may have been implemented with varying degrees of 
success across schools. In order to conduct such an analysis, it would be necessary to draw on 
school (and possibly teacher) level data to implement a three- (or four-) level model of 
achievement, where, as above, level one is the student level, level two is the school (or teacher 
level), and level three is the district level. It would be straightforward to implement such a model 
using the methods developed in this study. 



 

 
Table 8.15 
Effectiveness of the Urban Systemic Initiative by Grade and Year for the TLI Scale and OLS 
Model 

 

  
Grade 1995

4 0.565
     (1.327)     (

5 -0.323
      (1.212)     (
6 -0.874
      (1.031)     (
7 -1.871
      (0.945)     (
8 -1.942
      (0.954)     (

Note: Standard Errors in Paren
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grade 4
TLI Scale, OLS Model 
     
1996 1997 1998 1999 2000

0.728 0.765 0.868 1.533 1.228
1.328)     (0.799)     (0.799)     (0.799)     (0.800) 
-0.239 0.702 0.669 0.977 0.355

1.213)     (0.730)     (0.729)     (0.730)     (0.730) 
0.373 0.505 0.518 0.810 0.720

1.032)     (0.621)     (0.621)     (0.621)     (0.621) 
0.734 0.541 0.251 -0.034 0.512

0.947)     (0.570)     (0.570)     (0.570)     (0.571) 
1.730 0.037 0.482 0.759 1.211

0.955)     (0.575)     (0.575)     (0.575)     (0.575) 
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TLI Scale, OLS Model

1996 1997 1998 1999 2000

Year

grade 5 grade 6 grade 7 grade 8



 

Table 8.16 
Effectiveness of the Urban Systemic Initiative by Grade and Year for the Rasch Scale and OLS 
Model

  
Grade 1995

4 0.465
     (1.679)    

5 -0.231
      (1.611)    
6 -1.431
      (1.478)    
7 -1.601
      (1.331)    
8 -1.617
      (1.143)    

Note: Standard Errors in Pare
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grade 4
Rasch Scale OLS Model 
     
1996 1997 1998 1999 2000

0.593 0.982 1.020 1.995 1.554
 (1.681)     (1.012)     (1.012)     (1.012)     (1.013) 

-0.164 0.810 0.773 1.387 0.389
 (1.612)     (0.971)     (0.970)     (0.971)     (0.972) 

-0.512 -0.018 0.126 0.445 0.191
 (1.480)     (0.890)     (0.891)     (0.890)     (0.891) 

0.715 0.808 0.311 -0.747 0.017
 (1.334)     (0.803)     (0.803)     (0.803)     (0.804) 

1.803 -0.252 0.051 0.280 1.004
 (1.145)     (0.690)     (0.690)     (0.690)     (0.691) 
ntheses     
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Rasch Scale, OLS Model

996 1997 1998 1999 2000

Year

grade 5 grade 6 grade 7 grade 8



 

  
Grade 1995

4 0.318
     (1.379)     (

5 -0.439
      (1.256)     (
6 -0.960
      (1.067)     (
7 -2.018
      (0.978)     (
8 -2.053
      (0.979)     (

Note: Standard Errors in Paren

Table 8.17 
Effectiveness of the Urban Systemic Initiative by Grade and Year fpr the TLI Scale and EV1 
Model
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grade 4
TLI Scale, EV1 Model 
     
1996 1997 1998 1999 2000

0.599 0.646 0.740 1.389 0.977
1.380)     (0.830)     (0.830)     (0.830)     (0.831) 
-0.372 0.662 0.585 0.862 0.177

1.256)     (0.756)     (0.755)     (0.756)     (0.756) 
0.305 0.433 0.432 0.678 0.542

1.067)     (0.642)     (0.642)     (0.642)     (0.643) 
0.722 0.457 0.153 -0.146 0.341

0.980)     (0.590)     (0.590)     (0.590)     (0.590) 
1.767 -0.046 0.378 0.663 1.117

0.981)     (0.590)     (0.590)     (0.590)     (0.591) 
theses 
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TLI Scale, EV1 Model
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Year
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Table 8.18 
Effectiveness of the Urban Systemic Initiative by Grade and Year for the Rasch Scale and EV1 
Model 
 

Rasch Scale, EV1 Model 
       

Grade 1995 1996 1997 1998 1999 2000
4 0.059 0.375 0.880 0.934 1.881 1.212

     (1.793)     (1.795)     (1.080)     (1.080)     (1.080)     (1.081)
5 -0.422 -0.315 0.841 0.713 1.293 0.121
      (1.708)     (1.709)     (1.029)     (1.029)     (1.029)     (1.030)
6 -1.593 -0.640 -0.122 0.026 0.257 -0.114
      (1.557)     (1.558)     (0.937)     (0.938)     (0.937)     (0.938)
7 -1.803 0.789 0.791 0.285 -0.792 -0.124
      (1.418)     (1.422)     (0.855)     (0.855)     (0.855)     (0.856)
8 -1.810 1.896 -0.305 -0.027 0.266 1.079
      (1.202)     (1.204)     (0.725)     (0.725)     (0.725)     (0.726)

Note: Standard Errors in Parentheses     
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Conclusions 
 

This study has developed a powerful tool set for analyzing the determinants of student 
achievement, particularly with respect to large data sets. These methods could be practically 
applied to analyze the state data sets that will hopefully be assembled as part of the new federal 
testing requirements. 

 
This study directs attention to the fact that policy conclusions may be sensitive to the way 

in which test scores are scaled. We found that the TLI and Rasch scales frequently yielded quite 
different results. In subsequent research, we hope to develop statistical tests that will allow 
researchers to choose between alternative scales. A preferred scale is one that (in conjunction 
with a properly specified model) yields effect estimates that can be interpreted causally. 

 
We demonstrated that it is important to employ statistical methods that correctly adjust 

for measurement error in achievement. Interestingly, we showed that the traditional method for 
estimating measurement error variances yields (based on asymptotic maximum likelihood 
formulas) quite biased estimates of measurement error at the extremes of the achievement 
distribution. Fortunately, it is feasible to apply finite sample methods to obtain unbiased 
estimates of measurement error variances with respect to Rasch scale estimates and test score 
scales based on this scale (for example, the TLI). In subsequent research, we plan to generalize 
the finite sample approach to a wider class of test theory models—in particular, the three-
parameter logistic and two-parameter partial credit models. These latter models are frequently 
used to scale tests based on multiple choice and constructed-response items. 
 

We also demonstrated that it is important to be careful when analyzing data with weak 
control variables. Based on our analysis, we concluded that it was best to present estimates based 
on two estimating methods (OLS and EV1) rather than on a single method. We argued that the 
true model estimates (given possible biases due to weak controls) were likely to be in the range 
of estimates given by the OLS and EV1 estimates. 
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